Section 6.1 – Inner Product, Length, Orthogonality

Main Ideas in this section:

- Inner Products of vectors, length/norm of a vector
- Orthogonal Vectors
- Orthogonal Complements of Vector Spaces

• Inner Products: Given two vectors \(\mathbf{v}, \mathbf{w} \in \mathbb{R}^n \), the inner product (or dot product) of \(\mathbf{v} \) and \(\mathbf{w} \) is the scalar \(\mathbf{v}^T \mathbf{w} = v_1w_1 + v_2w_2 + \cdots + v_nw_n \).

Theorem 1 Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be vectors in \(\mathbb{R}^n \), and let \(c \) be a scalar.

a. \(\mathbf{v} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{v} \)
b. \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{u} \cdot \mathbf{v}) \)
c. \((c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v}) \)
d. \(\mathbf{u} \cdot \mathbf{u} \geq 0, \) and \(\mathbf{u} \cdot \mathbf{u} = 0 \) if and only if \(\mathbf{u} = \mathbf{0} \)

\[\Rightarrow (c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{w}) \]
Definition: The length (or norm) of \(\mathbf{v} \) is the nonnegative scalar \(||\mathbf{v}|| \) defined as follows:

\[
||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}, \quad \text{and} \quad ||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}
\]

Exercises

1. Given \(\mathbf{u} = (3, 4) \) and \(\mathbf{v} = (5, 1) \), find \(\mathbf{u} \cdot \mathbf{v} \), \(||\mathbf{u}|| \), \(||\mathbf{v}|| \), and find the distance between \(\mathbf{u} \) and \(\mathbf{v} \).

2. Given \(\mathbf{u} \) above, find a vector \(\mathbf{w} \) in the same direction as \(\mathbf{u} \), but one for which \(||\mathbf{w}|| = 1 \).

\(\star \star \) A vector of length 1 is called a unit vector.

- **Orthogonal Vectors** Two vectors \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^n \) are orthogonal to each other if \(\mathbf{u} \cdot \mathbf{v} = 0 \).

Exercise Determine which pair(s) of vectors are orthogonal.

\((4, 3), \; (-3, 4) \quad \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right), \; \left(\frac{\sqrt{3}}{2}, -\frac{1}{2} \right) \quad (10, 2), \; (1, -5) \)

\(\star \star \) Another word for “orthogonal” is perpendicular.
Exercises

1. Show that if vector \mathbf{y} is orthogonal to vectors \mathbf{u}_1 and \mathbf{u}_2, then \mathbf{y} is orthogonal to $\mathbf{u}_1 + \mathbf{u}_2$.

2. Sketch three vectors in \mathbb{R}^3 that demonstrate the result of problem 1.

• Orthogonal Complements

Consider \mathbb{R}^3, and let W be the subspace
\[
\left\{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}. \]
Let \mathbf{z} be the vector $(0, 0, 1) \in \mathbb{R}^3$. Then \mathbf{z} is orthogonal to every vector in W.

In fact,
- every vector in $\text{span}\{\mathbf{z}\}$ is OG to every vector in W, and
- no vector in \mathbb{R}^3 outside of $\text{span}\{\mathbf{z}\}$ is OG to vectors in W.

Definition The set of all vectors that are orthogonal to a subspace W of \mathbb{R}^n is called the **orthogonal complement** of W, and is denoted W^\perp.

Examples/Remarks

- Let the subspace W of \mathbb{R}^2 be the line that passes through $(0, 0)$ with slope 1. Then W^\perp is the line that passes through $(0, 0)$ with slope -1.

- Let W be the x_1 axis in \mathbb{R}^3. Then W^\perp is the x_2x_3 plane.

- Given a subspace W of \mathbb{R}^n, a vector \mathbf{x} is in W^\perp if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

- Given a subspace W of \mathbb{R}^n, W^\perp is also a subspace of \mathbb{R}^n.

Summary

- $\mathbf{u} \cdot \mathbf{v}$ is a **number**

- $||\mathbf{u}||$ is the length of vector \mathbf{u}, computed as $\sqrt{\mathbf{u} \cdot \mathbf{u}}$

- \mathbf{u}, \mathbf{v} are orthogonal $\iff \mathbf{u} \cdot \mathbf{v} = 0$.

- Orthogonal complement W^\perp of a subspace W of \mathbb{R}^n is the set of all $\mathbf{v} \in \mathbb{R}^n$ that are orthogonal to all $\mathbf{w} \in W$. That is, $W^\perp = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \cdot \mathbf{w} = 0 \ \forall \ \mathbf{w} \in W \}$.