4.3 Linearly Independent Sets; Bases

Definition

A set of vectors \(\{v_1, v_2, \ldots, v_p\} \) in a vector space \(V \) is said to be **linearly independent** if the vector equation

\[
c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0
\]

has only the trivial solution \(c_1 = 0, \ldots, c_p = 0 \).

The set \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly dependent** if there exists weights \(c_1, \ldots, c_p \), not all \(0 \), such that

\[
c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0.
\]

The following results from Section 1.7 are still true for more general vectors spaces.

A set containing the zero vector is linearly dependent.

A set of two vectors is linearly dependent if and only if one is a multiple of the other.

A set containing the zero vector is linearly independent.
EXAMPLE: \(\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 3 & 0 \end{bmatrix} \right\} \) is a linearly __________________ set.

EXAMPLE: \(\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix} \right\} \) is a linearly ______________ set since \(\begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix} \) is not a multiple of \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \).

Theorem 4

An indexed set \(\{v_1, v_2, \ldots, v_p\} \) of two or more vectors, with \(v_1 \neq 0 \), is linearly dependent if and only if some vector \(v_j \) \((j > 1)\) is a linear combination of the preceding vectors \(v_1, \ldots, v_{j-1} \).

EXAMPLE: Let \(\{p_1, p_2, p_3\} \) be a set of vectors in \(\mathbb{P}_2 \) where \(p_1(t) = t, p_2(t) = t^2, \) and \(p_3(t) = 4t + 2t^2 \). Is this a linearly dependent set?

Solution: Since \(p_3 = _____p_1 + _____p_2, \) \(\{p_1, p_2, p_3\} \) is a linearly __________________ set.
A Basis Set

Let H be the plane illustrated below. Which of the following are valid descriptions of H?

(a) $H = \text{Span}\{v_1, v_2\}$ (b) $H = \text{Span}\{v_1, v_3\}$

(c) $H = \text{Span}\{v_2, v_3\}$ (d) $H = \text{Span}\{v_1, v_2, v_3\}$

A basis set is an “efficient” spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\{v_1, v_2\}$ and $\{v_1, v_3\}$ to both be examples of basis sets or bases (plural for basis) for H.

DEFINITION

Let H be a subspace of a vector space V. An indexed set of vectors $\beta = \{b_1, \ldots, b_p\}$ in V is a basis for H if

(i) β is a linearly independent set, and

(ii) $H = \text{Span}\{b_1, \ldots, b_p\}$.
EXAMPLE: Let \(\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \), \(\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \), \(\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).

Show that \(\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \) is a basis for \(\mathbb{R}^3 \). The set \(\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \) is called a standard basis for \(\mathbb{R}^3 \).

Solutions: (Review the IMT, page 129) Let

\[
A = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Since \(A \) has 3 pivots, the columns of \(A \) are linearly independent by the IMT and the columns of \(A \) are linearly independent by IMT. Therefore, \(\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \) is a basis for \(\mathbb{R}^3 \).

EXAMPLE: Let \(S = \{1, t, t^2, \ldots, t^n\} \). Show that \(S \) is a basis for \(\mathbb{P}_n \).

Solution: Any polynomial in \(\mathbb{P}_n \) is in span of \(S \). To show that \(S \) is linearly independent, assume \(c_0 \cdot 1 + c_1 \cdot t + \cdots + c_n \cdot t^n = 0 \)

Then \(c_0 = c_1 = \cdots = c_n = 0 \). Hence \(S \) is a basis for \(\mathbb{P}_n \).
EXAMPLE: Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for \mathbb{R}^3?

Solution: Again, let $A = [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3] = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$. Using row reduction,

$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 5 \end{bmatrix}$

and since there are 3 pivots, the columns of A are linearly independent and they span \mathbb{R}^3 by the IMT. Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3.
EXAMPLE: Explain why each of the following sets is not a basis for \mathbb{R}^3.

(a) \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} , \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix} , \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ -3 \\ 7 \end{bmatrix} \right\} \)

(b) \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} , \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right\} \)
Bases for Nul A

EXAMPLE: Find a basis for Nul A where

$$A = \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix}.$$

Solution: Row reduce

$$\begin{bmatrix} A & 0 \end{bmatrix}:
\begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix}
\quad x_1 = -2x_2 - 13x_4 - 33x_5
\quad x_3 = 6x_4 + 15x_5
\quad x_2, x_4 \text{ and } x_5 \text{ are free}

\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}

\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}

\begin{bmatrix} \uparrow \\ u \\ \uparrow \\ v \end{bmatrix} + \begin{bmatrix} \uparrow \\ w \end{bmatrix}
Therefore \(\{u, v, w\} \) is a spanning set for \(\text{Nul } A \). In the last section we observed that this set is linearly independent. Therefore \(\{u, v, w\} \) is a basis for \(\text{Nul } A \). The technique used here always provides a linearly independent set.

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

EXAMPLE: Suppose \(v_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \) and
\[v_3 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}. \]

Solution: If \(x \) is in \(\text{Span}\{v_1, v_2, v_3\} \), then
\[
 x = c_1 v_1 + c_2 v_2 + c_3 v_3 = c_1 v_1 + c_2 v_2 + c_3 (____ v_1 + ____ v_2)
\]
\[
 = ____ v_1 + ____ v_2
\]
Therefore,
\[\text{Span}\{v_1, v_2, v_3\} = \text{Span}\{v_1, v_2\}. \]
THEOREM 5 The Spanning Set Theorem

Let \(S = \{v_1, \ldots, v_p\} \) be a set in \(V \) and let \(H = \text{Span}\{v_1, \ldots, v_p\} \).

a. If one of the vectors in \(S \) - say \(v_k \) - is a linear combination of the remaining vectors in \(S \), then the set formed from \(S \) by removing \(v_k \) still spans \(H \).

b. If \(H \neq \{0\} \), some subset of \(S \) is a basis for \(H \).
Bases for Col A

EXAMPLE: Find a basis for Col A, where

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution: Row reduce:

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix}$$

Note that

$b_2 = \underline{}b_1$ \quad and \quad $a_2 = \underline{}a_1$

$b_4 = 4b_1 + 5b_3$ \quad and \quad $a_4 = 4a_1 + 5a_3$

b_1 and b_3 are not multiples of each other

a_1 and a_3 are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore $\text{Span}\{a_1, a_2, a_3, a_4\} = \text{Span}\{a_1, a_3\}$ and $\{a_1, a_3\}$ is a basis for Col A.

10
THEOREM 6
The pivot columns of a matrix A form a basis for $\text{Col} \ A$.

EXAMPLE: Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ -4 \\ 6 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$.

Find a basis for $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Solution: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9 \end{bmatrix}$ and note that $\text{Col} \ A = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

By row reduction, $A \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore a basis for $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} \right\}$.
Review:

1. To find a basis for Nul A, use elementary row operations to transform $[A \ 0]$ to an equivalent reduced row echelon form $[B \ 0]$. Use the reduced row echelon form to find parametric form of the general solution to $Ax = 0$. The vectors found in this parametric form of the general solution form a basis for Nul A.

2. A basis for Col A is formed from the pivot columns of A.
 Warning: Use the pivot columns of A, not the pivot columns of B, where B is in reduced echelon form and is row equivalent to A.
