Proof Techniques

Let \(P \) and \(Q \) be statements. (For example, \(P \) could be a statement like “\(u \) and \(v \) are linearly independent.”)

If/Then Statements: “If \(P \), then \(Q \)” means that whenever \(P \) is true, \(Q \) then must be true. To prove this directly, assume \(P \) is true and use this and other properties to prove that \(Q \) is true.

Abbreviation: “\(P \implies Q \)”, which is pronounced “\(P \) implies \(Q \)”.

If and only if statements: “\(P \) if and only if \(Q \)” means both “if \(P \), then \(Q \)” and “if \(Q \), then \(P \)”. To prove an if and only if statement, prove both \(P \implies Q \) and \(Q \implies P \).

Abbreviations: we can also write “\(P \) if and only if \(Q \)” as “\(P \iff Q \)” or as “\(P \iff Q \)”.

Negation: The negation of \(P \) is “not \(P \).”

This is not always as simple as it sounds, and you should be very careful to avoid mistakes when taking negations.

For example, the negation of the statement “\(c_1, c_2, \ldots, c_n \) are all zero” is NOT “\(c_1, c_2, \ldots, c_n \) are all nonzero”. Rather, the negation of the statement “\(c_1, c_2, \ldots, c_n \) are all zero” is “at least one of \(c_1, c_2, \ldots, c_n \) is nonzero”.

Abbreviation: \(\neg P \)

Contrapositive: The contrapositive of “if \(P \), then \(Q \)” is “if not \(Q \), then not \(P \)” (\(\neg Q \implies \neg P \)).

The contrapositive of an if/then statement is logically equivalent to the original if/then statement. This means that another way to prove \(P \implies Q \) is to prove \(\neg Q \implies \neg P \).

More on Negation: The negation of “if \(P \), then \(Q \)” is “\(P \) and \(\neg Q \)”. We use this for proof by contradiction and for counterexamples, below.

Counterexamples: To show that a statement is false, you just need one example where it is false, which we call a counterexample. In particular, to show that an if/then statement “if \(P \), then \(Q \)” is false, a counterexample would be any example where we have “\(P \) and \(\neg Q \)”, (i.e, an example in which \(P \) is true but \(Q \) is false).

Proof by Contradiction for If/Then Statements: Another way to prove “if \(P \), then \(Q \)” is to assume “\(P \) and \(\neg Q \)” and derive a contradiction.

We would typically write this by first saying “assume \(P \)” and then saying “assume \(\neg Q \)” and then doing some work to derive a contradiction. You should be very careful with this method, as it is easy to make mistakes with what exactly “\(\neg Q \)” is, and what qualifies as a contradiction.

In many situations, it is more straightforward to write a direct proof or prove the contrapositive, \(\neg Q \implies \neg P \), than to do a proof by contradiction.