No calculators, books or notes are allowed on the exam. All electronic devices must be turned off and put away. You must show all your work in the blue book in order to receive full credit. Please box your answers and cross out any work you do not want graded. Make sure to sign your blue book. With your signature you are pledging that you have neither given nor received assistance on the exam. Good luck!

1. (15 points) Consider the differential equation $x \frac{d x}{d t}=-t^{2}$.
a. Is this differential equation linear? Explain!

Solution: No, because of the $x x^{\prime}$-term-the differential equation can not be brought into the form $a_{1}(t) x^{\prime}+a_{0}(t) x=E(t)$.
b. Find the solution for which $x(0)=-5$.

Solution: Separation of variables: $x^{2} / 2=\int x d x=-\int t^{2} d t=-t^{3} / 3+C$ or with different C $x^{2}=-2 t^{3} / 3+C$. Insert $t=0, x=-5$ to get $25=(-5)^{2}=C$, so $x=-\sqrt{25-2 t^{3} / 3}$.
2. (5 points) Show that the functions t^{3} and t^{4} are solutions of $t^{2} x^{\prime \prime}-6 t x^{\prime}+12 x=0$.

Solution: Plug them in:

$$
t^{2} \cdot 3 \cdot 2 t-6 t \cdot 3 t^{2}+12 t^{3}=0 \quad \checkmark \text { and } t^{2} \cdot 4 \cdot 3 t^{2}-6 t \cdot 4 t^{3}+12 t^{4}=0 \quad \checkmark
$$

3. (5 points, no partial credit) Find all solutions of $\left(t D^{2}-D\right) x=0$ that are of the form t^{α}.

Solution: Plug in t^{α} to get $(\alpha(\alpha-1)-\alpha) t^{\alpha-1}=0$ for all t, hence $\alpha=0$ and $\alpha=2$ are the only solutions, so 1 and t^{2} are (all) solutions of the differential equation of the form t^{α}.
4. (5 points, no partial credit) Evaluate

$$
\operatorname{det}\left(\begin{array}{ccccc}
0 & 1 & 6 & 9 & 1 \\
0 & 0 & 2 & 7 & 0 \\
0 & 0 & 0 & 3 & 8 \\
0 & 0 & 0 & 0 & 4 \\
5 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Solution: $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$.
5. (10 points) A savings account pays 3% interest per year, compounded continuously. In addition, the income from another investment is credited to the account continuously, at the rate of $\$ 700$ per year. Set up a differential equation to model this account.
Solution: $x^{\prime}=0.03 x+700$.
6. (5 points, no partial credit) Find the general solution of $(D-1)^{2}(D+1) x=0$.

Solution: $c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}$. [This should take 15 seconds.]
7. (7 points, no partial credit) Find the general solution of $3\left(D^{2}+D+2\right)^{2} x=0$.

Solution: $3 e^{-t / 2}\left(\left(c_{1}+c_{2} t\right) \cos \frac{\sqrt{7} t}{2}+\left(c_{3}+c_{4} t\right) \sin \frac{\sqrt{7} t}{2}\right)$. \quad [Should take 1 minute.]
8. (8 points, no partial credit) Make a simplified guess for a particular solution of

$$
(D-1)\left(D^{2}+1\right)^{3}(D+2) x=t^{2} e^{t}+e^{-t} \sin 3 t+t
$$

Do not evaluate the constants.
Solution: $c_{1} t e^{t}+c_{2} t^{2} e^{t}+c_{3} t^{3} e^{t}+c_{4} e^{-t} \sin 3 t+c_{5} e^{-t} \cos 3 t+c_{6}+c_{7} t$. [Should take 1 min.]
9. (15 points) Find (and simplify where possible) the general solution of $x^{\prime \prime}-2 x^{\prime}+x=e^{t} / t^{2}$. (Check all your intermediate answers carefully; no credit for work based on wrong prior steps.)

Solution: General solution of the associated homogeneous differential equation $x^{\prime \prime}-2 x^{\prime}+x=0$: $H(t)=c_{1} e^{t}+c_{2} t e^{t}$; variation of parameters gives the solution $p(t)=c_{1}(t) e^{t}+c_{2}(t) t e^{t}$ with

$$
\begin{array}{llrlrl}
c_{1}^{\prime}(t) e^{t}+c_{2}^{\prime}(t) t & e^{t}=0 & & =0 & c_{1}^{\prime}(t)+c_{2}^{\prime}(t) t & \\
c_{1}^{\prime}(t) e^{t}+c_{2}^{\prime}(t)(t+1) e^{t} & =e^{t} / t^{2},
\end{array} \quad \text { or } \quad \begin{gathered}
c_{2}^{\prime}(t) t
\end{gathered}=0
$$

so $c_{2}^{\prime}(t)=1 / t^{2}, c_{1}^{\prime}(t)=-1 / t$, hence $c_{1}(t)=-1 / t, c_{2}(t)=-\ln t$, and $p(t)=-e^{t} \ln t-\frac{1}{t} t e^{t}$. Therefore $x(t)=c_{1} e^{t}+c_{2} t e^{t}-e^{t} \ln t$.
10. (10 points)
a. Compute the Wronskian of $h_{1}(t)=t e^{t}$ and $h_{2}(t)=t^{2} e^{t}$ at $t=1$.

Solution: $W\left[t e^{t}, t^{2} e^{t}\right]=\left|\begin{array}{cc}t e^{t} & t^{2} e^{t} \\ (t+1) e^{t} & \left(t^{2}+2 t\right) e^{t}\end{array}\right|=\left|\begin{array}{cc}t e^{t} & t^{2} e^{t} \\ e^{t} & 2 t e^{t}\end{array}\right|=e^{2}$ for $t=1$.
b. Are these 2 functions linearly independent?

Solution: Yes, because $e^{2} \neq 0$.
11. (10 points) Are the functions $t^{5},|t|^{5}$ linearly independent on $(-\infty, \infty)$? Justify your conclusion.

Solution: They are: If $c_{1} t^{5}+c_{2}|t|^{5}=0$ for all t then for $t=1$ we get $c_{1}+c_{2}=0$ and for $t=-1$ we get $-c_{1}+c_{2}=0$. Adding and subtracting these two equations gives $c_{1}=c_{2}=0$.
12. (5 points) Suppose $f(t)$ is continuous. Solve the initial-value problem $x^{\prime}+f(t) x=0, \quad x(1)=0$. (Hint: Think before applying standard techniques.)

Solution: By inspection, $x(t)=0$ (for all t) is a solution that satisfies the initial condition.
One could get this by separation of variables (but why would you?): Rewrite as $\frac{d x}{d t}=-f(t) x$ and separate variables to get $\frac{d x}{x}=-f(t) d t$ (if $x \neq 0$). Integrating (and omitting absolute values), we get $\ln x=-\int f(t) d t+C$, so $x=e^{C-\int f(t) d t}=A e^{-\int f(t) d t}$ for some constant A (which used to be positive but in retrospect does not have to be). To satisfy the initial condition, we must take $A=0$, which gives $x(t)=0$ for all t.

