Tufts University

Exam I

Monday, February 13, 2012
Differential Equations

Department of Mathematics
12:00-1:20pm

No calculators, books or notes are allowed on the exam. All electronic devices must be turned off and put away. You must show all your work in the blue book in order to receive full credit. A correct answer with no work may not necessarily score any points. Please box your answers and cross out any work you do not want graded. Make sure to sign your blue book. With your signature, you are pledging that you have neither given nor received assistance on the exam. Any violations will be reported to the appropriate dean, and will result in an F for the course.
Please start each problem on a new page.

1. (10 points) Compute

$$
\operatorname{det}\left[\begin{array}{cccc}
0 & -1 & 3 & 2 \\
5 & 0 & 2 & 1 \\
6 & 0 & 0 & 1 \\
2 & 0 & 0 & 3
\end{array}\right]
$$

2. (20 points) Consider the first order o.d.e

$$
\text { (A) } \quad(t-1) \frac{d x}{d t}=-x
$$

(a) Find the largest rectangular region in the $t x$-plane that contains $(0,0)$ on which the hypotheses of the existence and uniqueness theorem (E \& UT) hold.
(b) Do the hypotheses of the E \& UT hold for the point $(1,0)$?
(c) Do you have a solution of (A) with $x(1)=0$?
(d) Is it unique? Justify.
3. (10 points) Show that $h_{1}(t)=e^{t}$ and $h_{2}(t)=e^{2 t}$ are linearly independent.
4. (14 points) Show that the functions $|t|, t$ and t^{2} for $-\infty<t<\infty$ are linearly independent.
5. (28 points)
(a) Check that $h_{1}(t)=\frac{1}{t}$ and $h_{2}(t)=\frac{2}{t^{2}}$ are solutions of

$$
(H) \quad\left(t^{2} D^{2}+4 t D+2\right) x=0 \quad t>0
$$

(b) Find the general solution. Explain why this is the general solution.
(c) Find a constant solution for

$$
(N) \quad\left(t^{2} D^{2}+4 t D+2\right) x=1
$$

(d) Find a solution for (N) that satisfies $x(1)=0, x^{\prime}(1)=0$. Is it unique? Justify.
6. (18 points) Solve the system

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}-x_{4}-x_{5} & =2 \\
2 x_{1}+2 x_{2}+2 x_{3}-3 x_{4}-2 x_{5} & =1 \\
-x_{1}-x_{3}+2 x_{4}+x_{5} & =1
\end{aligned}
$$

Solutions to Exam 1, Math 38

1. $\operatorname{det}\left[\begin{array}{cccc}0 & -1 & 3 & 2 \\ 5 & 0 & 2 & 1 \\ 6 & 0 & 0 & 1 \\ 2 & 0 & 0 & 3\end{array}\right]=-32$

2
(A)

$$
\begin{aligned}
& (t-1) \frac{d x}{d t}=-x \\
& x^{\prime}=-\frac{x}{t-1}=f(t, x) \quad \frac{\partial f}{\partial x}=\frac{-1}{t-1}
\end{aligned}
$$

Both f-exat-af $/ \partial x$ ore discontinuous at $t=1$.
a) $-\infty<t \leqslant 1,-\infty<x<\infty$
b) No because fond of lax are discontinuous when $t=1$
c) $x(t)=0$ is a solution of (A) satisfying $x(1)=0$
d) Try separation of variables if x is not the zero function

$$
\ln |x|=\int \frac{d x}{x}=-\int \frac{-1}{t-1} d t=\ln \left(\frac{1}{|t-1|}\right)+C
$$

So $\quad x=-\frac{k}{|t-1|} \quad$ If $K \neq 0$ you cannot plug in $t=1$
so the solution in c) is unique.
3) Yous can use the Wronckian

$$
\left|\begin{array}{ll}
e^{t} & e^{2 t} \\
e^{t} & 2 e^{2 t}
\end{array}\right|=e^{3 t}\left|\begin{array}{cc}
1 & 1 \\
1 & z
\end{array}\right|=e^{3 t} \neq 0
$$

so e^{t} and $e^{2 t}$ are independent
4) You may not use the Wronstian because $|t|$ has mo derivative at 0 Try

$$
x|t|+y t+z t^{2}=0 \quad \text { for all } t
$$

So $t=1-g \leq e_{i}$

$$
t=-1
$$

$$
t=2
$$

$$
\left.\begin{array}{r}
x+y+z=0 \\
x-y+z=0 \\
2 x+2 y+4 z=0
\end{array}\right\}(*)
$$

Now $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 4\end{array}\right|=-2 \neq 0$ so the only solution to the system (x) is $x=y=2=0$ and so $|t|, t$ and t^{2} are in dependent
5)

$$
\begin{aligned}
\left(t^{2} t^{2}+4 t D+2\right) t^{-1} & =t^{2}\left(2 t^{-3}\right)+4 t\left(-t^{-2}\right)+2 t^{-1} \\
& =2 t^{-1}-4 t^{-1}+2 t^{-1}=0 \\
\left(t^{2} t^{2}+4 t D+2\right) 2 t-2 & =t^{2}\left(12 t^{-4}\right)+4 t\left(-4 t^{-3}\right)+2\left(2 t^{-2}\right) \\
& =12 t^{-2}-16 t^{-2}+4 t^{-2}=0
\end{aligned}
$$

b) $h_{1}=\frac{1}{t}$ and $h_{2}(t)=\frac{2}{t^{2}}$ are independent because $\omega\left(\frac{2}{t^{2}}, \frac{2}{t^{2}}\right)=-\frac{2}{t^{4}} \neq 0$ on $(0, \infty)$. They are solutions by a)

Thus $c_{1} \frac{1}{t}+-c_{2}-\frac{2}{t^{2}}$ is the general solution of A
which is a seined order equation andiron it reed two independent
solutions to generate the general solution.
c) If x is constant $D x=D^{2} x=0$ and

$$
\left(t^{2} D^{2}+4 t D+2\right) x=t^{2} \cdot 0+4 t \cdot 0+2 x=1 \text { give }
$$

$x(t)=1 / 2$ is a constant solution of (N)
d) Consequently $x=-\frac{1}{2}+c_{1} \frac{1}{t}+c_{2} \frac{2}{t^{2}}$ is the general solution are $x(1)=0$ gives $\quad \frac{1}{2}+c_{1}+2 c_{2}=0$

We have $x^{\prime}(t)=-\frac{c_{1}}{t^{2}}-\frac{4 c_{0}}{t^{3}}$ and $x^{\prime}(1)=0$ give
$-c_{1}-4 c_{2}=0 \quad$ So we wave the system with matrix

$$
\left(\begin{array}{cc|c}
1 & 2 & -12 \\
-1 & -4 & 0
\end{array}\right) \text { when reduces to }\left(\begin{array}{ll|l}
1 & 0 & -1 \\
0 & 1 & 1 / 4
\end{array}\right)
$$

So $c_{t}=-1 \quad a_{n} d c_{2}=1 / 4$ give the unique solution to N with $\quad x(0)=X^{\prime}(0)=0$.
6) $\left(\begin{array}{cccc|c}1 & 2 & 1 & - & -2 \\ 2 & 2 & -3 & -2 \\ -1 & 0 & -1 & 2 & 1\end{array}\right) \frac{R_{2}-2 R_{1}}{R_{3}+R_{1}}\left(\begin{array}{cccc|c}1 & z & 1 & +1 & 2 \\ 0 & -2 & 0 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 0\end{array}\right)$
rows and 3 ass proportional We may eliminate R_{2} and change it by a row of zeros at the bottom and put R_{3} in the second row.

$$
\left(\begin{array}{rrrrr|r|}
1 & 2 & 1 & -1 & -1 & z \\
0 & 2 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}-R_{2}}\left(\begin{array}{rrrrr|r}
1 & 0 & 1 & -2 & -1 & -1 \\
0 & 2 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
x_{1}=-x_{3}+2 x_{4}+x_{5} & -1 \\
x_{2} & +1 / 2 x_{4} \\
& +3 / 2
\end{array}
$$

$$
x_{2}=x_{3}
$$

$$
x_{4}=\quad x_{4}
$$

$$
x_{5}=\quad x_{5}
$$

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-1 / 2 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

gevenah homog sol"n particular

$$
x_{3}=x_{4}=x_{5}=1 \text { groes abother partieulax: }\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

