1. (14 points) Consider the equation

$$
t x^{\prime}+(1-t) x^{2}=0
$$

Please, answer the following questions (NO PARTIAL CREDIT):
(a) Is the given differential equation separable?

ANS: YES
(b) Is it linear?

ANS: NO
(c) Give the largest interval containing $t=1$ where the equation is normal.

ANS: $(0, \infty)$
(d) Write the equation in the standard form.
$x^{\prime}=-\frac{1-t}{t} x^{2}$
(e) Find the general solution.

Separating variables and integrating, $-\frac{1}{x}=t-\ln |t|+C . A N S: x=\frac{1}{\ln |t|-t-C}, t \neq 0$, and $x=0$.
(f) Find a solution satisfying the initial condition $x(1)=-2$.

ANS: $x=\frac{1}{\ln |t|-t+1 / 2}$
(g) Why is the solution satisfying the initial condition $x(1)=-2$ unique? (Please, refer to an appropriate theorem).
Due to the existence and uniqueness theorem.
2. (10 points) Consider the differential equation

$$
(t-1) \frac{d x}{d t}=x
$$

(a) Determine the largest rectangular region of the (t, x)-plane that contains the point $(0,2)$ and on which the hypotheses of the existence and uniqueness theorem hold for the given o.d.e.
ANS: $(-\infty, 1) \times(-\infty, \infty)$
(b) Determine whether there is no solution, a unique solution, or more than one solutions passing through the point $(1,2)$.
If there is a solution $x(t)$ then at $t=1$ one has $(1-1) x^{\prime}(1)=x(1)$, or $0=2$. This contradiction shows that there is no solution passing through the point $(1,2)$. ANS: NO SOLUTION.

3 (10 points) Solve the following first order linear differential equation

$$
2 x^{\prime}-x=t e^{t} .
$$

(i) The general solution of the homogeneous equation is $x=C e^{\frac{1}{2} t}$;
(ii) A particular solution to the nonhomogeneous equation is $(t-2) e^{t}$;
(iii) ANS: $x=C e^{\frac{1}{2} t}+(t-2) e^{t}$;

4 (8 points) (NO PARTIAL CREDIT)
(a) Determine whether the system of linear algebraic equations

$$
\begin{gathered}
x-2 y+z=0 \\
3 x+2 y+z=0 \\
y-z=0
\end{gathered}
$$

has a unique solution, infinitely many solutions, or no solution;
Cramer's test implies that the system has a unique solution
(b) If the system has a unique solution, then find this solution.

ANS: (By inspection) ($0,0,0$).
5. (6 points) Use the Wronskian test for independence to show that functions $e^{a t}$ and $e^{b t}$, with $a \neq b$, are linearly independent.
The Wronskian is $W(t)=\operatorname{det}\left(\begin{array}{cc}e^{a t} & e^{b t} \\ a e^{a t} & b e^{b t}\end{array}\right)=(b-a) e^{(a+b) t} \neq 0$ if $a \neq b$.
6. (10 points) Use the exponential shift formula to compute the following expressions:
(a) $\left(D^{2}+D-5\right)\left[t e^{2 t}\right]$

ANS: $\left(D^{2}+D-5\right)\left[t e^{2 t}\right]=e^{2 t}\left((D+2)^{2}+(D+2)-5\right)[t]=e^{2 t}\left(D^{2}+5 D+1\right)[t]=e^{2 t}(5+t)$.
(b) $(D-5)^{4}\left[e^{5 t} \sin (t)\right]$

ANS: $(D-5)^{4}\left[e^{5 t} \sin (t)\right]=e^{5 t} D^{4}[\sin (t)]=e^{5 t} \sin (t)$.
7. (15 points) Consider the following nonhomogeneous second order differential equation

$$
x^{\prime \prime}-2 x^{\prime}+x=t^{2}
$$

(a) Find the general solution of the corresponding homogeneous equation;

ANS: $x=\left(C_{1}+t C_{2}\right) e^{t}$
(b) Find a particular solution of the form $x(t)=A t^{2}+B t+C$ to the nonhomogeneous equation;
ANS: $x_{p}=t^{2}+4 t+6$
(c) Find the solution of the given equation satisfying the conditions

$$
x(0)=x^{\prime}(0)=0 .
$$

ANS: $x=(2 t-6) e^{t}+t^{2}+4 t+6$
8. (7 points) Find the annihilator of smallest possible order for the function (NO PARTIAL CREDIT)

$$
t^{2}+e^{t} \cos 2 t-1
$$

ANS: $A(D)=D^{3}\left(D^{2}-2 D+5\right)$
9. (20 points) Solve the following initial-value problem

$$
\begin{gathered}
\left(D^{2}-1\right)\left(D^{2}+1\right) x=0 \\
x(0)=1, x^{\prime}(0)=x^{\prime \prime}(0)=x^{\prime \prime \prime}(0)=0
\end{gathered}
$$

The general solution is $x=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos (t)+C_{4} \sin (t)$. Initial conditions give

$$
\begin{aligned}
& C_{1}+C_{2}+C_{3}=1, \\
& C_{1}-C_{2}+C_{4}=0 \\
& C_{1}+C_{2}-C_{3}=0 \\
& C_{1}-C_{2}-C_{4}=0
\end{aligned}
$$

Adding first and third equations, and then second and forth equations, we have

$$
\begin{gathered}
C_{1}+C_{2}=1 / 2 \\
C_{1}-C_{2}=0
\end{gathered}
$$

This implies $C_{1}=C_{2}=1 / 4$, and from second and third equations, $C_{3}=1 / 2$ and $C_{4}=0$.

ANS: $x=\frac{1}{4} e^{t}+\frac{1}{4} e^{-t}+\frac{1}{2} \cos (t)$.

