Examination III

U N I V ER S I T Y
No calculators, books or notes are allowed on the exam. All electronic devices must be turned off and put away. You must show all your work in the blue book in order to receive full credit. Please box your answers and cross out any work you do not want graded. Make sure to sign your blue book. With your signature you are pledging that you have neither given nor received assistance on the exam. Good luck!

1. (10 points)
a. Show that $x(t)=t+4$ is a solution of the differential equation $\sin (t) D^{3} x+4 D x-x=-t$.

Solution: $\sin (t) D^{3} x+4 D x-x=0+4 \cdot 1-(t+4)=-t$.
b. Write $\sin (t) D^{3} x+4 D x-x=-t$ as a system of differential equations.

Solution: Write $x_{1}=x, x_{2}=x^{\prime}, x_{3}=x^{\prime \prime}$ to get

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \\
x_{3}^{\prime} & =\frac{1}{\sin t} x_{1}-4 \frac{1}{\sin t} x_{2}-\frac{t}{\sin t}
\end{aligned} \quad \text { or } \quad D \vec{x}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\frac{1}{\sin t} & -\frac{4}{\sin t} & 0
\end{array}\right) \vec{x}-\left(\begin{array}{c}
0 \\
0 \\
\frac{t}{\sin t}
\end{array}\right)
$$

c. Give one solution to the system in vector form.

Solution: $x_{1}=x=t+4, x_{2}=x^{\prime}=1, x_{3}=x^{\prime \prime}=0$ gives $\vec{x}(t)=\left(\begin{array}{c}t+4 \\ 1 \\ 0\end{array}\right)$.
2. (10 points) Solve the initial-value problem $\quad \frac{d x}{d t}=x^{2}, \quad x(0)=-3$.

Solution: $-\frac{1}{x}=\int \frac{d x}{x^{2}}=\int d t=t+C$, so $C=1 / 3$ and $x(t)=-\frac{1}{t+1 / 3}$.
3. (10 points) Find all solutions (in vector form) to the equation $D \vec{x}=\left(\begin{array}{rrrr}5 & 3 & 0 & 0 \\ -3 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 7\end{array}\right) \vec{x}$. Solution: $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ are eigenvectors for 1, 7, respectively, and $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ are generalized eigenvectors for the double eigenvalue 2 (obtained by solving $0=\operatorname{det}\left(\begin{array}{cc}5-\lambda & 3 \\ -3 & -1-\lambda\end{array}\right)$).

$$
\vec{x}(t)=c_{1} e^{t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+c_{2} e^{7 t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)+c_{3} e^{2 t}\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+3 t\left(\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right)\right]+c_{4} e^{2 t}\left[\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+3 t\left(\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right)\right] .
$$

4. (10 points) Find all solutions to the equation $\quad D \vec{x}=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right) \vec{x}+\binom{1}{e^{t}}$

Solution: By inspection, the general solution of the associated homogeneous differential equation is $\vec{h}(t)=c_{1} e^{3 t}\binom{1}{0}+c_{2} e^{5 t}\binom{0}{1}$. (Without inspection, do the usual: find the eigenvalues 3 (with eigenvector $\binom{1}{0}$) and 5 (with eigenvector $\binom{0}{1}$) to get this general solution.)
Variation of parameters: $\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)\binom{c_{1}^{\prime}}{c_{2}^{\prime}}=\binom{1}{e^{t}}$ gives $c_{1}=-e^{-3 t} / 3, c_{2}=-e^{-4 t} / 4$ and $\vec{x}(t)=c_{1} e^{3 t}\binom{1}{0}+c_{2} e^{5 t}\binom{0}{1}-\binom{1 / 3}{e^{t} / 4}$.
5. (10 points) Use the Laplace transform to solve the initial value problem $D^{2} x+D x-2 x=2$ with $x(0)=-1$ and $x^{\prime}(0)=0$. No credit by any other method.
Solution: $\left(s^{2}+s-2\right) \mathscr{L}[x]+s+1=\frac{2}{s}$, so $\mathscr{L}[x]=\frac{-s^{2}-s+2}{s\left(s^{2}+s-2\right)}=-\frac{1}{s}$ and $x(t)=-1$ for all t.
6. (10 points) Find all solutions to the differential equation $\left((D-1)^{2}+1\right)(D+3) D x=12$.

Solution: The general solution of the associated homogeneous differential equation is $h(t)=$ $c_{1} e^{t} \cos t+c_{2} e^{t} \sin t+c_{3} e^{-3 t}+c_{4}$; a simplified guess for a particular solution is $k t$; plug this in to get $6 k=12$, so the general solution is $x(t)=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t+c_{3} e^{-3 t}+c_{4} t+2 t$.
7. (20 points) Consider the system $\frac{d x}{d t}=-x-y^{2} \quad \frac{d y}{d t}=y(2-x)$.
a. Is the function $E(x, y)=x^{2}-y^{2}$ a constant of motion?

Solution: $2 x\left(-x-y^{2}\right)-2 y \cdot y(2-x)=-2 x^{2}-4 y^{2}<0$ except when $(x, y)=(0,0)$, so no.
b. Is the function $E(x, y)=x^{2}-y^{2}$ a Lyapunov function?

Solution: Yes, by the computation in a. it (strictly!) decreases along nonconstant integral curves. c. Find all equilibria of this system.

Solution: $0=x^{\prime}=-x-y^{2}$ and $0=y^{\prime}=y\left(2+y^{2}\right)$ give $y=0, \quad x=-y^{2}=0$. So $(0,0)$ is it.
d. Find the linearization at each equilibrium and decide whether its phase portrait matches any of those at the end of the examination sheet; if so, identify which of these pictures it matches.
Solution: Dropping higher-order terms, the linearization at (0,0) is $\frac{d x}{d t}=-x, \frac{d y}{d t}=2 y$. (Or plug $(x, y)=(0,0)$ into $A_{(x, y)}=\left(\begin{array}{cc}\frac{\partial}{\partial x}\left(-x-y^{2}\right) & \frac{\partial}{\partial y}\left(-x-y^{2}\right) \\ \frac{\partial}{\partial x}(y(2-x)) & \frac{\partial}{\partial y}(y(2-x))\end{array}\right)=\left(\begin{array}{cc}-1 & -2 y \\ -y & 2-x\end{array}\right) \cdot\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$ has eigenvalues -1 (eigenvector $\binom{1}{0}$) and 2 (eigenvector $\binom{0}{1}$); this matches \mathbf{V}.
e. For each equilibrium decide whether the Hartman-Grobman Theorem applies.

Solution: Yes, the eigenvalues of the linearization matrix have real parts -1 and 2 ; both nonzero.
f. Classify each equilibrium as stable or unstable.

Solution: Unstable by parts d. and e.
g. Classify each equilibrium as attractor, repeller or neither.

Solution: Neither, by parts d. and e.
h. Are there closed integral curves for this system?

Solution: No, for several reasons: - A closed integral curve must go around an equilibrium, and the only equilibrium here is a saddle, which makes this impossible. \bullet Since $y^{\prime}=y(2-x)$, solutions can not cross the x-axis, so a closed integral curve would have to lie in the upper half-plane or in the lower half-plane, neither of which contains an equilibrium around which to go. \bullet When $x=0$ then $x^{\prime}=-y^{2} \leq 0$, so integral curves cannot cross from the left half-plane to the right half-plane, so a closed integral curve would have to lie in the left half-plane or in the right half-plane, neither of which contains an equilibrium around which to go. - There is a Lyapunov function (which strictly decreases along nonconstant solutions; see a., b.!).
8. (10 points) Consider the system $\frac{d x}{d t}=x^{2}-y^{2} \quad \frac{d y}{d t}=y x-y$.
a. Find all equilibrium points.

Solution: $0=\frac{d y}{d t}=y x-y=y(x-1)$ implies $y=0$ or $x=1$. If $0=\frac{d x}{d t}=x^{2}-y^{2}$, then $x^{2}=y^{2}$, so $y=0$ implies $x=0$ and $x=1$ implies $y= \pm 1$. So they are $(0,0),(1,1)$ and $(1,-1)$.
b. For each equilibrium decide whether the phase portrait of the linearization matches any of those at the end of the examination sheet; if so, identify which of these pictures it matches.
Solution: The linearization matrix at (x, y) is $A_{(x, y)}=\left(\begin{array}{cc}2 x & -2 y \\ y & x-1\end{array}\right)$, so
$A_{(0,0)}=\left(\begin{array}{rr}0 & 0 \\ 0 & -1\end{array}\right)$; this brings about the general solution $\binom{c_{1}}{c_{2} e^{-t}}$, as shown in IV. $A_{(1, \pm 1)}=\left(\begin{array}{cc}2 & \mp 2 \\ \pm 1 & 0\end{array}\right)$ has eigenvalues $1 \pm i$, hence outward spirals. Take $\binom{0}{1}$ as a test point to see that at $(1,1)$ they go counterclockwise, as in III. and at $(1,-1)$ they go clockwise, as in II.
c. For each equilibrium decide whether the Hartman-Grobman Theorem applies.

Solution: $(0,0)$: No because 0 is an eigenvalue. $(1,1)$: Yes-all eigenvalues have real part $1 \neq 0$.
9. (10 points)
a. Find a recursion formula for the coefficients in the power series (centered at 0) for the solution of $\quad D^{2} x-t D x+x=0 \quad$ with $\quad x(0)=0, \quad x^{\prime}(0)=1$.
Solution: Plug in $x(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$ to get $\sum_{k=0}^{\infty}(k+2)(k+1) b_{k+2} t^{k}-b_{k} \cdot k t^{k}+b_{k} t^{k}=0$ and $b_{k+2}=\frac{k-1}{(k+2)(k+1)} b_{k}$.
b. Find the power series.

Solution: The initial values give $b_{0}=0, b_{1}=1$, so the recursion gives $b_{k}=0$ for all even k, $b_{3}=0$, and therefore $b_{k}=0$ for all odd k thereafter. So $x(t)=\sum_{k=0}^{\infty} b_{k} t^{k}=t$. (Which checks!)

Phase portraits for matching up:
I:

II:

III:

IV:

