Mathematics 51 Examination III

Differential Equations May 6, 2013, 8:30–10:30am

No calculators, books or notes are allowed on the exam. All electronic devices must be turned off and put away. **You must show all your work** in the blue book in order to receive full credit. *Please box your answers and cross out any work you do not want graded*. Make sure to sign your blue book. With your signature you are pledging that you have neither given nor received assistance on the exam. *Good luck*!

1. (10 points)

a. Show that x(t) = t + 4 is a solution of the differential equation $\sin(t)D^3x + 4Dx - x = -t$.

Solution: $\sin(t)D^3x + 4Dx - x = 0 + 4 \cdot 1 - (t+4) = -t$.

b. Write $\sin(t)D^3x + 4Dx - x = -t$ as a system of differential equations.

Solution: Write $x_1 = x, x_2 = x', x_3 = x''$ to get

$$\begin{aligned} x_1' &= x_2 \\ x_2' &= x_3 \\ x_3' &= \frac{1}{\sin t} x_1 - 4 \frac{1}{\sin t} x_2 - \frac{t}{\sin t} \end{aligned} \quad \text{or} \quad D\vec{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sin t} & -\frac{4}{\sin t} & 0 \end{pmatrix} \vec{x} - \begin{pmatrix} 0 \\ 0 \\ \frac{t}{\sin t} \end{pmatrix} \end{aligned}$$

c. Give one solution to the system in vector form.

Solution:
$$x_1 = x = t + 4, x_2 = x' = 1, x_3 = x'' = 0$$
 gives $\vec{x}(t) = \begin{pmatrix} t+4\\1\\0 \end{pmatrix}$.

2. (10 points) Solve the initial-value problem $\frac{dx}{dt} = x^2$, x(0) = -3.

Solution:
$$-\frac{1}{x} = \int \frac{dx}{x^2} = \int dt = t + C$$
, so $C = 1/3$ and $x(t) = -\frac{1}{t+1/3}$.

3. (10 points) Find all solutions (*in vector form*) to the equation $D\vec{x} = \begin{pmatrix} 5 & 3 & 0 & 0 \\ -3 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix} \vec{x}.$

Solution:
$$\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$ are eigenvectors for 1, 7, respectively, and $\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix}$ are general-

ized eigenvectors for the double eigenvalue 2 (obtained by solving $0 = \det \begin{pmatrix} 3 - \lambda & 3 \\ -3 & -1 - \lambda \end{pmatrix}$).

$$\vec{x}(t) = c_1 e^t \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + c_2 e^{7t} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} + c_3 e^{2t} \left[\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + 3t \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} \right] + c_4 e^{2t} \left[\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + 3t \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} \right].$$

4. (10 points) Find all solutions to the equation $D\vec{x} = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ e^t \end{pmatrix}$

Solution: By inspection, the general solution of the associated homogeneous differential equation is $\vec{h}(t) = c_1 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{5t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (Without inspection, do the usual: find the eigenvalues 3 (with eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$) and 5 (with eigenvector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$) to get this general solution.) Variation of parameters: $\begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} c'_1 \\ c'_2 \end{pmatrix} = \begin{pmatrix} 1 \\ e^t \end{pmatrix}$ gives $c_1 = -e^{-3t}/3$, $c_2 = -e^{-4t}/4$ and $\vec{x}(t) = c_1 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{5t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1/3 \\ e^t/4 \end{pmatrix}$.

5. (10 points) Use the Laplace transform to solve the initial value problem $D^2x + Dx - 2x = 2$ with x(0) = -1 and x'(0) = 0. No credit by any other method.

Solution:
$$(s^2 + s - 2)\mathscr{L}[x] + s + 1 = \frac{2}{s}$$
, so $\mathscr{L}[x] = \frac{-s^2 - s + 2}{s(s^2 + s - 2)} = -\frac{1}{s}$ and $x(t) = -1$ for all $t = -1$ for all $t = -1$.

6. (10 points) Find all solutions to the differential equation $((D-1)^2+1)(D+3)Dx = 12$.

Solution: The general solution of the associated homogeneous differential equation is $h(t) = c_1 e^t \cos t + c_2 e^t \sin t + c_3 e^{-3t} + c_4$; a simplified guess for a particular solution is kt; plug this in to get 6k = 12, so the general solution is $x(t) = c_1 e^t \cos t + c_2 e^t \sin t + c_3 e^{-3t} + c_4 t + 2t$.

- 7. (20 points) Consider the system $\frac{dx}{dt} = -x y^2$ $\frac{dy}{dt} = y(2 x)$. **a.** Is the function $E(x, y) = x^2 - y^2$ a constant of motion?
 - **Solution:** $2x(-x-y^2) 2y \cdot y(2-x) = -2x^2 4y^2 < 0$ except when (x, y) = (0, 0), so no. **b.** Is the function $E(x, y) = x^2 y^2$ a Lyapunov function?

Solution: Yes, by the computation in a. it (strictly!) decreases along nonconstant integral curves.c. Find all equilibria of this system.

Solution: $0 = x' = -x - y^2$ and $0 = y' = y(2 + y^2)$ give y = 0, $x = -y^2 = 0$. So (0, 0) is it. d. Find the linearization at each equilibrium and decide whether its phase portrait matches any of those at the end of the examination sheet; if so, identify which of these pictures it matches.

Solution: Dropping higher-order terms, the linearization at (0,0) is $\frac{dx}{dt} = -x$, $\frac{dy}{dt} = 2y$. (Or plug (x,y) = (0,0) into $A_{(x,y)} = \begin{pmatrix} \frac{\partial}{\partial x}(-x-y^2) & \frac{\partial}{\partial y}(-x-y^2) \\ \frac{\partial}{\partial x}(y(2-x)) & \frac{\partial}{\partial y}(y(2-x)) \end{pmatrix} = \begin{pmatrix} -1 & -2y \\ -y & 2-x \end{pmatrix}$.) $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$

has eigenvalues -1 (eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$) and 2 (eigenvector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$); this matches **V**.

e. For each equilibrium decide whether the Hartman–Grobman Theorem applies.

Solution: Yes, the eigenvalues of the linearization matrix have real parts -1 and 2; both nonzero. **f** . Classify each equilibrium as stable or unstable.

Solution: Unstable by parts d. and e.

g. Classify each equilibrium as attractor, repeller or neither.

Solution: Neither, by parts d. and e.

h. Are there closed integral curves for this system?

Solution: No, for several reasons: • A closed integral curve must go around an equilibrium, and the only equilibrium here is a saddle, which makes this impossible. • Since y' = y(2-x), solutions can not cross the x-axis, so a closed integral curve would have to lie in the upper half-plane or in the lower half-plane, neither of which contains an equilibrium around which to go. • When x = 0 then $x' = -y^2 \le 0$, so integral curves cannot cross from the left half-plane to the right half-plane, so a closed integral curve would have to lie in the left half-plane to the right half-plane, neither of which contains an equilibrium around which to go. • When x = 0 then $x' = -y^2 \le 0$, so integral curves cannot cross from the left half-plane to the right half-plane, so a closed integral curve would have to lie in the left half-plane or in the right half-plane, neither of which contains an equilibrium around which to go. • There is a Lyapunov function (which strictly decreases along nonconstant solutions; see **a.**, **b**.!).

- 8. (10 points) Consider the system $\frac{dx}{dt} = x^2 y^2$ $\frac{dy}{dt} = yx y$.
 - **a.** Find all equilibrium points.

Solution: $0 = \frac{dy}{dt} = yx - y = y(x - 1)$ implies y = 0 or x = 1. If $0 = \frac{dx}{dt} = x^2 - y^2$, then $x^2 = y^2$, so y = 0 implies x = 0 and x = 1 implies $y = \pm 1$. So they are (0, 0), (1, 1) and (1, -1).

b. For each equilibrium decide whether the phase portrait of the linearization matches any of those at the end of the examination sheet; if so, identify which of these pictures it matches.

Solution: The linearization matrix at
$$(x, y)$$
 is $A_{(x,y)} = \begin{pmatrix} 2x & -2y \\ y & x-1 \end{pmatrix}$, so $A_{(0,0)} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$; this brings about the general solution $\begin{pmatrix} c_1 \\ c_2 e^{-t} \end{pmatrix}$, as shown in **IV**.
 $A_{(1,\pm 1)} = \begin{pmatrix} 2 & \mp 2 \\ \pm 1 & 0 \end{pmatrix}$ has eigenvalues $1 \pm i$, hence outward spirals. Take $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as a test point to see that at $(1, 1)$ they go counterclockwise, as in **III.** and at $(1, -1)$ they go clockwise, as in **III.** c. For each equilibrium decide whether the Hartman–Grobman Theorem applies.

Solution: (0,0): No because 0 is an eigenvalue. (1,1): Yes—all eigenvalues have real part $1 \neq 0$. 9. (10 points)

a. Find a recursion formula for the coefficients in the power series (centered at 0) for the solution of $D^2x - tDx + x = 0$ with x(0) = 0, x'(0) = 1.

Solution: Plug in
$$x(t) = \sum_{k=0}^{\infty} b_k t^k$$
 to get $\sum_{k=0}^{\infty} (k+2)(k+1)b_{k+2}t^k - b_k \cdot kt^k + b_k t^k = 0$ and $b_{k+2} = \frac{k-1}{(k+2)(k+1)}b_k$.
b. Find the power series.

Solution: The initial values give $b_0 = 0$, $b_1 = 1$, so the recursion gives $b_k = 0$ for all even k, $b_3 = 0$, and therefore $b_k = 0$ for all odd k thereafter. So $x(t) = \sum_{k=0}^{\infty} b_k t^k = t$. (Which checks!)

Phase portraits for matching up:

