1. (10 points) **True or False - No Partial Credit:** On the first page of your blue book, answer the following questions as **True** or **False**.

 (a) Let \(u, v, \) and \(w \) be three nonzero vectors in \(\mathbb{R}^3 \). Then, \(u \cdot (v \cdot w) = (u \cdot v) \cdot w \).

 (b) Let \(g(x, y) \) be a continuous function defined on the domain \(D = \{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} \).
 The integral
 \[
 \iint_D g(x, y) dA = \left(\int_a^b g(x, y) \, dx \right) \left(\int_c^d g(x, y) \, dy \right).
 \]

 (c) Let \(F \) be a vector field with continuous partial derivatives. Then, \(\nabla \cdot (\nabla \times F) = 0 \).

 (d) Let \(F = \langle -\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, z \rangle \). Stokes’ Theorem says that \(\iint \nabla \times F \cdot dS = \int_C F \cdot dr \) for \(C \) being the closed boundary curve of the top half of the unit sphere, \(S \).

 (e) Let \(\nabla \cdot F = 1 \) and let \(S \) be the surface of the unit cube, \(0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1 \), with outward unit normal. Then, \(\int_S F \cdot dS = 1 \).

2. (10 points) Let \(r(t) = (2 + t) \mathbf{i} + (t^2 + 3) \mathbf{j} + \left(\frac{2}{3}t^3 - 5 \right) \mathbf{k} \).

 (a) Find the parametric equations for the tangent line to the curve \(r(t) \) at \(t = 3 \).

 (b) Find the arc length of \(r(t) \) from \(t = 0 \) to \(t = 3 \).

3. (10 points) Find the absolute minimum and maximum for the function \(f(x, y) = 2x + 2y^2 + 1 \) on the unit disk \(D = \{(x, y) \mid x^2 + y^2 \leq 1\} \).

4. (10 points) Let \(f(x, y, z) = x^2 + y^2 + z^2 \), and consider the integral
 \[
 I = \int_0^2 \int_0^{\sqrt{4-y^2}} \int_{-\sqrt{4-y^2-z^2}}^{\sqrt{4-y^2-z^2}} f(x, y, z) \, dx \, dz \, dy.
 \]

 (a) Rewrite the integral in spherical coordinates. **Do not evaluate this integral (yet).**

 (b) Evaluate either the original integral or the one in part (a).

The exam continues on the back!
5. (10 points) Let $\mathbf{F}(x, y) = \langle 2x, -y \rangle$.

(a) Is \mathbf{F} a conservative field? If so, find a potential function for \mathbf{F}.

(b) Let \mathbf{C} be the curve parameterized by $\mathbf{r}(t) = \langle \sin(t), t \rangle$, for $0 \leq t \leq \frac{\pi}{2}$. Evaluate $\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$.

6. (15 points) Using Green’s Theorem, compute the area of the region, D, between the x-axis and the tent-shaped curve parametrized as follows:

$$\mathbf{r}(t) = \langle \cos^3(t), \sin^2(t) \rangle \quad \text{for} \quad 0 \leq t \leq \pi.$$

Make sure to explicitly show how you are using Green’s Theorem to get full credit. A figure of the region D is shown below:

![Diagram of the region D]

Will Jumbo fit in the tent?
(Not really an exam question...)

7. (10 points) Let S be the surface parametrized by

$$\mathbf{t}(r, \theta) = \langle r \cos(\theta), r \sin(\theta), r \rangle, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq r \leq 2.$$

(a) Sketch the surface.

(b) Evaluate $\iint_{S} z \, dS$

8. (15 points) Let $\mathbf{F} = \langle y^2, z^2, x^2 \rangle$ and let \mathbf{C} be the curve that bounds the triangular plate, $x + y + z = 1$, in the first octant ($x > 0, y > 0, z > 0$), oriented clockwise when viewed from above.

Use Stokes’ Theorem to compute the circulation, $\oint_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$.

9. (10 points) Let $\mathbf{F}(x, y, z) = \langle x^2, y, x - z \rangle$ and S be the boundary surfaces of the region contained in the cylinder $x^2 + y^2 = 1$ between the planes $z = y$ and $z = 2$, with outward unit normal.

Evaluate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$.

End of Exam

According to a recent survey, 100% of all people say they participate in surveys.