
Math 13 Tufts University November 15, 2010
Department of Mathematics

Exam 2 Solutions

1. (15 points) Find and classify (as local minima, local maxima, or saddle points) all critical

points of the function g(x, y) = x4 − 2xy +
1

2
y2.

We have the partial derivatives

gx(x, y) = 4x3 − 2y gxy(x, y) = −2 gy(x, y) = −2x+ y

gxx(x, y) = 12x2 gyy(x, y) = 1.

The critical points occur at (x, y) where

gx(x, y) = 0 and gy(x, y) = 0

4x3 − 2y = 0 −2x+ y = 0

y = 2x3

so: − 2x+ 2x3 = 0

x(x2 − 1) = 0

x = 0,±1

y = 0,±2.

The critical points are (0, 0), (1, 2), (−1,−2). Compute D = gxx(x, y)gyy(x, y) − [gxy(x, y)]
2

at each critical point:

(0, 0) : D = 0 · 1− [−2]2 = −4 < 0

(1, 2) : D = 12 · 1− [−2]2 = 8 > 0 and gxx(1, 2) = 12 > 0

(−1,−2) : D = 12 · 1− [−2]2 = 8 < 0 and gxx(−1,−2) = 12 > 0

By the second partials test, (0, 0) is a saddle point, and (1, 2) and (−1,−2) are local minima.

2. (15 points) Use the method of Lagrange multipliers to find the maximum volume of a rectan-
gular box without a top that can be made of 12 square meters of material.

Let the box have dimensions x, y, and z. The volume of the box is f(x, y, z) = xyz and the
surface area g(x, y, z) = xy + 2xz + 2yz. The constraint is g(x, y, z) = 12 m2. Then

∇f = (yz, xz, xy) and ∇g = (y + 2z, x+ 2z, 2x + 2y)

and we solve ∇f = λ∇g (this is the method of Lagrange multipliers). This generates three
equations (one for each component of the gradients)

yz = λ(y + 2z) xz = λ(x+ 2y) xy = λ(2x+ 2y)
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which can be solved by recognizing that 1/λ is common to all three. The first two give x = y
and the second two give y = 2z, so x = 2z as well. Then the constraint is

12 = g(2z, 2z, z) = 4z2 + 4z2 + 4z2 = 12z2

z2 = 1

z = ±1

and we discard the negative solution as unphysical. Thus z = 1 and x = y = 2. The volume
is maximized at (x, y, z) = (2, 2, 1). The maximum value is f(2, 2, 1) = 4 m3.

3. (10 points) Evaluate the integral

4
∫

0

2
∫

√
x

1

1 + y3
dy dx by reversing the order of integration.
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Figure 1: Domain for problem 3
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=
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4. (15 points) Figure 2 shows the solid bounded by the surfaces

x = 0, y = z2, z = 2, and y = 2x

as well as the projection of the solid onto the xy-plane. Set up iterated triple integrals that
yield the volume of the solid in the following orders. Do not evaluate!

(a) dz dy dx

(b) dx dy dz

(a) Examining the volume, the z-integral goes from the lower surface y = z2 to the upper
surface z = 2. Examining the shaded region in the x-y plane, the y-integral goes from
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Figure 2: Problem 4

the line y = 2x to the line y = 4. Examining the projection of the shaded region onto
the x-axis, the x-integral has bounds x = 0 and x = 2.

Thus we find V =
∫ 2
0

∫ 4
2x

∫ 2√
y 1 dz dy dx

(b) Examining the volume, the x-integral goes from the back surface x = 0 to the front
surface (plane) y = 2x. Examining the region in the y-z plane, the y-integral goes from
the line y = 0 to the curve y = z2. Examining the z-axis, the z-integral has bounds
z = 0 and z = 2.

Thus we find V =
∫ 2
0

∫ z2

0

∫ y/2
0 1 dx dy dz

5. (15 points) Let E be the region in the first octant bounded below by the cone z =
√

x2 + y2

and above by the sphere x2 + y2 + z2 = 32. See Figure 3 below. Consider the integral

∫∫∫

E

xz dV.

(a) Rewrite the integral as an iterated integral in rectangular coordinates.

(b) Rewrite the integral as an iterated integral in cylindrical coordinates.

(c) Rewrite the integral as an iterated integral in spherical coordinates.

(Note: do not evaluate any of the above.)

(a) We set up the rectangular integral in the order dz dy dx. The lower surface is z =
√

x2 + y2 and the upper surface is z =
√

32− x2 − y2 so these are the bounds on the
z-integral. The two surfaces meet where their z-values agree:

x2 + y2 = 32− x2 − y2

2x2 + 2y2 = 32

x2 + y2 = 16

which is a circle of radius 4, as drawn in Figure 3 (shaded region). We integrate over
this region by having y range from zero to

√
16− x2 and x from 0 to 4. That is:

∫∫∫

E

xz dV =

∫ 4

0

∫

√
16−x2

0

∫

√
32−x2−y2

√
x2+y2

xz dz dy dx.
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Figure 3: Problem 5

(b) Using the standard orientation for cylindrical co-ordinates, r2 = x2 + y2 and the region
in the plane can be expressed as 0 < θ < π/2 and 0 < r < 4. The differential volume
element becomes dV = r dz dr dθ. Changing variables in the integrand then gives

∫∫∫

E

xz dV =

∫ π/2

0

∫ 4

0

∫

√
32−r2

r
(r cos θ)z r dz dr dθ

=

∫ π/2

0

∫ 4

0

∫

√
32−r2

r
zr2 cos θ dz dr dθ.

(c) We need to find an equation for the cone in spherical co-ordinates:

z2 = x2 + y2

2z2 = x2 + y2 + z2

2(ρ cos φ)2 = ρ2

cos2 φ = 1/2

cosφ = 1/
√
2 =

√
2/2

φ = π/4.

The bound on θ remains as in part (b), ρ extends from the origin to the sphere
ρ =

√
32 = 4

√
2, and now the differential volume is dV = ρ2 sinφ dφ dρ dθ. Changing

variables in the integrand then gives

∫∫∫

E

xz dV =

∫ π/2

0

∫ 4
√
2

0

∫ π/4

0
(ρ sin φ cos θ)(ρ cosφ) ρ2 sinφ dφ dρ dθ

=

∫ π/2

0

∫ 4
√
2

0

∫ π/4

0
ρ4 cos θ sin2 φ cosφ dφ dρ dθ.

6. (15 points) Evaluate the integral

3
∫

−3

√
9−x2
∫

0

9−x2−y2
∫

0

x dz dy dx.
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Figure 4: Domain for Problem 6

The domain in the x-y plane is given in Figure 4, which we change to cylindrical co-ordinates:

∫ 3

−3

∫

√
9−x2

0

∫ 9−x2−y2

0
x dz dy dx =

∫ π

0

∫ 3

0

∫ 9−r2

0
r cos θ r dz dr dθ

=

∫ π

0
cos θ dθ

∫ 3

0

∫ 9−r2

0
r2 dz dr

= [ sin θ ]π0

∫ 3

0

∫ 9−r2

0
r2 dz dr

= (0− 0)

∫ 3

0

∫ 9−r2

0
r2 dz dr

= 0.

7. (15 points) Evaluate the following line integrals.

(a)
∫

C

xy3 ds where C is the quarter circle of radius 2 shown in Figure 5.
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Figure 5: Problem 7a

Parametrize the curve for 0 ≤ t ≤ π/2

x(t) = 2 cos t y(t) = 2 sin t

x′(t) = −2 sin t y′(t) = 2 cos t

and use that

ds =
(

[

x′(t)
]2

+
[

y′(t)
]2
)1/2

dt

=
(

[−2 sin t]2 + [2 cos t]2
)1/2

dt

=
(

4 sin2 t+ 4cos2 t
)1/2

dt

= 2 dt



to convert the integral to

∫

C

xy3 ds =

∫ π/2

0
x(t) [y(t)]3 2 dt

=

∫ π/2

0
2 cos t [2 sin t]3 2 dt

= 32

∫ π/2

0
cos t sin3 t dt u = sin t

= 32

∫ 1

0
u3 du du = cos t dt

= 32

[

1

4
u4

]1

0

= 8(1− 0) = 8.

(b)

∫

C

F(x, y, z)·dr where F(x, y, z) = (x+y) i−x j+sin2 xk and C is the curve parametrized

by r(t) = t i− t2 j+ cos2 tk for 0 ≤ t ≤ π

2
.

We need to find r′(t) and F(r(t)):

r(t) = (x(t), y(t), z(t)) F(r(t)) =
(

x(t) + y(t), −x(t), sin2 x(t)
)

=
(

t, −t2, cos2 t
)

=
(

t− t2, −t, sin2 t
)

r′(t) = (1, −2t, −2 cos t sin t) .

Then the integral becomes

∫

C

F(x, y, z) · dr =

∫ π/2

0

(

t− t2, −t, sin2 t
)

· (1, −2t, −2 cos t sin t) dt

=

∫ π/2

0

(

t− t2 + 2t2 − 2 cos t sin3 t
)

dt

=

∫ π/2

0

(

t+ t2
)

dt− 2

∫ π/2

0
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1

2
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3
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End of Exam


