Determine whether the following series is absolutely convergent, conditionally convergent, or divergent. Justify your answer. State and check hypotheses of any test, rules or theorems you use.

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{400 + n^2} \]

\[\sum_{n=1}^{\infty} \frac{n}{400 + n^2} = \sum_{n=1}^{\infty} \frac{\frac{n}{n^2}}{\frac{400}{n^2} + 1} \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \]

Let \(L = \lim_{n \to \infty} \frac{n}{400 + n^2} = \lim_{n \to \infty} \frac{n}{400 + n^2} = \lim_{n \to \infty} \frac{1}{400/n^2 + 1} = 1 \)

Since \(0 < 1 < n \) and since \(\sum \frac{1}{n} \) is the divergent harmonic series (\(p \)-series, \(p=1 \leq 1 \)) our series is not \(\text{ABC} \).

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{400 + n^2} \]

\[\text{AST} \]

\[\lim_{n \to \infty} \frac{n}{400 + n^2} = \lim_{n \to \infty} \frac{n}{400 + n^2} = 0 \]

\[\frac{n}{400 + n^2} > 0 \text{ for } n > 1 \]

\[\text{Show } \frac{n}{400 + n^2} \text{ is eventually decreasing;} \]

Let \(f(x) = \frac{x}{400 + x^2} \), \(x > 1 \)

\[f'(x) = \frac{(400 + x^2) - x(2x)}{(400 + x^2)^2} = \frac{400 - x^2}{(400 + x^2)^2} < 0 \text{ for } x > 20 \]

\[f(x) \text{ is decreasing for } x > 20 \text{ so } \frac{n}{400 + n^2} \text{ decreases for } n > 20 \]

So our series is conditionally convergent.