No books, notes, or calculators. TURN OFF YOUR CELL PHONE. ANYONE CAUGHT WITH THEIR CELL PHONE ON WILL BE GIVEN A 10 POINT DEDUCTION. Cross out what you do not want us to grade. You must show work to receive full credit. Please try to write neatly. You need not simplify your answers unless asked to do so. You should evaluate standard trigonometric functions like \(\tan(\pi/3) \). You are not allowed to quote results about growth rates. You are required to sign your exam book. With your signature, you pledge that you have neither given nor received assistance on this exam.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Point Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1(b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1(c)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1. Determine the convergence or divergence of the following series. Justify your answer. State and check hypotheses of any test, rules or theorems you use. (10 points each)

(a) \[\sum_{k=1}^{\infty} \frac{\sin^4 k}{5^k} \]

(b) \[\sum_{k=1}^{\infty} \frac{2^k}{(k^2 + 1)^k} \]
(c) \[\sum_{k=2}^{\infty} \frac{1}{k \ln^2 k} \]
2. (10 points) Determine the convergence or divergence of the following series. Justify your answer. State and check hypotheses of any test, rules or theorems you use. If the series converges, find its sum.

\[
\sum_{k=1}^{\infty} \frac{(-3)^k}{5^{k+1}}
\]

3. (10 points) Quadratic Approximation
 (a) Find the 2nd-order Taylor polynomial \(p_2(x) \) for \(f(x) = 2x + \cos x \) centered at 0.

 \[
 p_2(x) = \frac{f(0)}{2!}x^2 + \frac{f'(0)}{1!}x + f(0)
 \]

 \[
 = \frac{2}{2!}x^2 + \frac{-\sin(0)}{1!}x + 2
 \]

 \[
 = x^2 + 2
 \]

 (b) Use the polynomial you found in part (a) to approximate \(f(1/2) \). Simplify your answer.
4. (20 points) Determine whether the following series converge absolutely, conditionally, or diverge. Justify your answer. State and check hypotheses of any test, rules or theorems you use.

(a) \[\sum_{k=1}^{\infty} \frac{(-1)^k \cdot \pi}{\tan^{-1}(k)} \]

(b) \[\sum_{k=1}^{\infty} \frac{(-6)^k}{k!} \]
5. (12 points) Find the radius of convergence and interval of convergence of the power series
\[\sum_{k=1}^{\infty} \frac{(-1)^k \cdot (x - 3)^k}{k^2 \cdot 2^k}. \]
6. (8 points) Given that \(f(x) = \ln(1 - x) = -\sum_{k=1}^{\infty} \frac{x^k}{k} \) for \(-1 \leq x < 1\), find a power series representation (centered at 0) for \(g(x) = x^5 \ln(1 + \frac{x}{3}) \) and give the interval of convergence.
7. (10 pts) **True/false questions.** Indicate your answer by circling T or F.

(a) The series \(\sum_{k=1}^{\infty} 1^k \) converges to 1. \hspace{1cm} T F

(b) The antiderivative of the series \(\sum_{k=0}^{\infty} (-2)^k x^k \) is \(C + \sum_{k=0}^{\infty} \frac{(-2)^{k+1} x^{k+1}}{k+1} \). \hspace{1cm} T F

(c) If the power series \(\sum_{k=0}^{\infty} c_k (x - 2)^n \) has radius of convergence 3 then the series diverges at \(x = 4 \). \hspace{1cm} T F

(d) If \(\sum_{k=1}^{\infty} a_k \) converges then \(\sum_{k=1}^{\infty} |a_k| \) converges. \hspace{1cm} T F

(e) If the sequence \(\{a_1 + a_2 + \cdots + a_n\} \) converges to \(S \) then \(\sum_{k=1}^{\infty} a_k \) converges to \(S \). \hspace{1cm} T F