1. Consider the following cake, which is $\frac{1}{3}$ Chocolate (C), $\frac{1}{3}$ Blueberry (B) and $\frac{1}{3}$ Walnut:

(a) Suppose two people, Peter (P) and Dina (D), wish to share the cake. In your last homework you summarized their preferences as follows:
Valuations of the different components:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>B</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\frac{2}{7}$</td>
<td>0</td>
<td>$\frac{2}{7}$</td>
</tr>
<tr>
<td>D</td>
<td>$\frac{3}{6}$</td>
<td>$\frac{3}{6}$</td>
<td>$\frac{3}{6}$</td>
</tr>
</tbody>
</table>

i. Consider the division between P and D shown below, which results from the **equal division** method. (Note: we call a division resulting from doing the equal division method an equal division)

Verify that

$(P$’s share) = (D$’s share) = $\frac{1}{2}$

ii. Notice that in the equal division above both P and D receive half of the cake by volume. Let’s now consider an **alternative division** that also assigns P and D half of the cake by volume, shown below.
A. Write down what *fraction* of each component each slice is made up of:

\[P \text{'s slice} = S_1 = \underline{\underline{\underline{\underline{}}} C + \underline{\underline{\underline{}}} B + \underline{\underline{\underline{}}} W \]
\[D \text{'s slice} = S_2 = \underline{\underline{\underline{}}} C + \underline{\underline{\underline{}}} B + \underline{\underline{\underline{}}} W \]

B. Is this division an **equal division** (i.e. does it satisfy the definition of the equal division method)?

Circle One: Yes No

C. Why is assigning each person \(\frac{1}{N} \) the volume of the *whole* cake not enough to qualify as an equal division?

(Hint: Does this tell you what fraction of each *component* a person gets?)

D. Find each person’s share in the **alternative division**.

\[P \text{'s share} = \underline{\underline{\underline{}}} \]
\[D \text{'s share} = \underline{\underline{\underline{}}} \]

E. Is the **alternative division** an objective improvement over the equal division?

2. Three cousins Edward (E), Sam (S) and Rebecca (R) have also been told they inherited the circular plot of land which is made up of 4 components, \(C_1, C_2, C_3 \) and \(C_4 \), each composing \(\frac{1}{4} \) of the plot.
E, S and R decide they will divide up the land between the three of them. E and S’s valuations of the components are given below and R’s preferences are as follows:
Use this to fill in R’s valuations of each component in the table below.

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>S</td>
<td>$\frac{1}{7}$</td>
<td>$\frac{2}{7}$</td>
<td>$\frac{1}{7}$</td>
<td>$\frac{4}{7}$</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose E cuts as follows:

![Diagram of land division]

The valuations of each slice are as follows:

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>S</td>
<td>$\frac{3}{14}$</td>
<td>$\frac{1}{14}$</td>
<td>$\frac{3}{14}$</td>
</tr>
<tr>
<td>R</td>
<td>$\frac{7}{18}$</td>
<td>$\frac{3}{18}$</td>
<td>$\frac{7}{18}$</td>
</tr>
</tbody>
</table>

(a) List all slices each of S and R think is worth at least $\frac{1}{3}$ of the land in his/her own eyes.

$S:$

$R:$

(b) List all divisions that could result from using the lone divider method where E cuts as shown above and S and R are the choosers. Indicate whether or not each division is envy-free. If it is not envy-free list all incidences of envy.
3. Consider the following collection of 12 DVDs consisting of 3 types:

- 2 Romance DVDs (R)
- 4 Horror DVDs (H)
- 6 Comedy DVDs (C)

We will represent the DVDs in the following diagram where one small square represents 1 DVD (all small squares are identical in area):

```
H H R R
H C C C
H C C C
```

(a) Which of the following divisions represents a division resulting from the equal division method among 2 people, A and B? Circle all that apply.

In all options:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.

II.

III.

IV.

In all options:

- | square assigned to A
- | square assigned to B

I.

II.

III.

IV.

5