A few extra proof problems for the final

- 1. Let V and W be vector spaces and let $T: V \to W$ be linear. Prove that T is one-to-one if and only if ker $(T) = \{0\}$.
- 2. Let A be an $m \times n$ matrix. Prove that the columns of A are independent if and only if $Nul(A) = \{0\}$.
- 3. Let V and W be vector spaces and let $T: V \to W$ be linear. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ span V.
 - (a) Prove that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ spans range(T).
 - (b) Now assume T is onto W. Prove that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ spans W.
- 4. Describe the zero vectors in the following vector spaces: \mathbb{R}^n , \mathbb{P}_n , $M_{2\times 3}$.