A few extra proof problems for the final

1. Let V and W be vector spaces and let $T: V \rightarrow W$ be linear. Prove that T is one-to-one if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$.
2. Let A be an $m \times n$ matrix. Prove that the columns of A are independent if and only if $\operatorname{Nul}(A)=$ $\{\mathbf{0}\}$.
3. Let V and W be vector spaces and let $T: V \rightarrow W$ be linear. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ span V.
(a) Prove that $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ spans range (T).
(b) Now assume T is onto W. Prove that $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ spans W.
4. Describe the zero vectors in the following vector spaces: $\mathbb{R}^{n}, \mathbb{P}_{n}, M_{2 \times 3}$.
