Math 70
Linear Algebra

TUFTS UNIVERSITY
Final Exam

May 9, 2016, 8:30-10:30 A.M. Department of Mathematics

Instructions: No notes or books are allowed. All calculators, cell phones, or other electronic devices must be turned off and put away during the exam. Unless otherwise stated, you must show all work to receive full credit. You are required to sign the last page of your exam. With your signature you are pledging that you have neither given nor received assistance on the exam. Students found violating this pledge will receive an F in the course.

Problem	Point Value	Points
1	10	
2	2	
3	6	
4	8	
5	10	
6	8	
7	10	
8	8	
9	8	
10	6	
11	8	
12	8	
13	8	
	100	

1. (10 points) For each question, indicate your answer by shading the appropriate box. No partial credit.
(a) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
(b) \mathbb{P}_{2} is a subspace of $\mathbb{P}_{3}\left(\mathbb{P}_{n}\right.$ is the set of polynomials of degree less than or equal to $\left.n\right)$.
(c) Is it possible to have a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property that $T(u)=T(v)$ for some pair of distinct vectors u and v in \mathbb{R}^{n} and that T is onto \mathbb{R}^{n} ?
(d) Every orthogonal set in \mathbb{R}^{n} has at most n vectors in it.
(e) If the orthogonal projection of a vector \mathbf{v} onto a subspace W equals \mathbf{v}, then $\mathbf{v} \in W$.

T F
2. (2 points) Let V be a vector space. Consider the three sets
i. S_{1} is a linearly independent subset of V but it does not span V;
ii. S_{2} is a spanning set of V but it is not linearly independent, and
iii. S_{3} is a basis of V.

Order the sets from smallest to largest in the spaces below.
3. (6 points) Let A be an $n \times n$ matrix such that $\operatorname{det}\left(A^{4}\right)=0$. Is A invertible? Justify your answer.
4. (8 points) Let $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 6\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Show that A is diagonalizable by finding an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$
5. (10 points) Suppose A is a 4×4 matrix and assume $\lambda=0$ is an eigenvalue of A.
(a) Define what it means that $\lambda=0$ is an eigenvalue of A.
(b) Use the assumption that $\lambda=0$ is an eigenvalue and the definition of linear dependence to prove that the columns of A are linearly dependent.
(c) The maximum rank of A (dimension of $\operatorname{Col} A$) is \qquad —.
6. (8 points) Let $A=\left[\begin{array}{rrr}5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11\end{array}\right]$. The characteristic polynomial of A is $p(\lambda)=(\lambda-1)(\lambda+3)^{2}$.
(a) Find a basis for the eigenspace corresponding to $\lambda=-3$.
(b) Is A diagonalizable? Justify your answer.
7. (10 points) Define the transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{M}_{2 \times 2}$ by $T\left(a+b t+c t^{2}\right)=\left[\begin{array}{cc}a+2 b & b-c \\ 5 c & 0\end{array}\right]$. Then T is linear. You do not need to show this.

Let $\mathcal{B}=\left\{1, t, t^{2}\right\} \quad$ and $\quad \mathcal{C}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
be bases for \mathbb{P}_{2} and $\mathbb{M}_{2 \times 2}$, respectively. Find each of the following:
(a) $T\left(4 t+5 t^{2}\right)$
(b) The kernel of T.
(c) The matrix for T relative to the bases \mathcal{B} and \mathcal{C}. (Referred to as ${ }_{\mathcal{C}}[T]_{\mathcal{B}}$ or ${ }_{\mathcal{C}} M_{\mathcal{B}}$.)
8. (8 points) Let $T: \mathbb{P}_{2} \rightarrow W$ be a linear transformation.

Let $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and $\mathcal{C}=\left\{e^{x}, \cos (x), \sin (x)\right\}$ be bases for \mathbb{P}_{2} and W, respectively.

Let $M=\mathfrak{e}[T]_{\mathcal{B}}=\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & 3\end{array}\right]$ be the matrix of the transformation relative to the bases \mathcal{B} and \mathcal{C}.
(a) Find $\left[4-3 t+t^{2}\right]_{\mathcal{B}}$
(b) Find $T\left(4-3 t+t^{2}\right)$.
9. (8 points) Let $\mathbf{w}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{l}4 \\ 0 \\ 8\end{array}\right]$.
(a) Show that \mathbf{w}_{1} and \mathbf{w}_{2} are orthogonal.
(b) Find the distance from \mathbf{b} to $W=\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$.

Recall: $\quad \mathbf{w}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{l}4 \\ 0 \\ 8\end{array}\right]$.
(c) Let A be the matrix $A=\left[\mathbf{w}_{1} \mathbf{w}_{2}\right]$. Decide whether $A \mathbf{x}=\mathbf{b}$ is consistent and explain your answer.
(d) Find all least-squares solutions to $A \mathbf{x}=\mathbf{b}$.
10. (6 points) Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 2\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 8 \\ 8\end{array}\right]$. Use the Gram-Schmidt process to find an orthogonal basis of $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$. You may assume that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis of W.
11. (8 points) Let \mathbf{w}_{1} and \mathbf{w}_{2} be vectors in \mathbb{R}^{3}. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T(\mathbf{v})=\left[\begin{array}{l}\mathbf{v} \cdot \mathbf{w}_{1} \\ \mathbf{v} \cdot \mathbf{w}_{2}\end{array}\right]$. Prove that T is linear.
12. (8 points) Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation that is one-to-one. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly independent set of a vectors in V. Prove that the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly independent in W.
13. (8 points) Let W be a subspace of \mathbb{R}^{n}.

Its orthogonal complement is $W^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{w}=0\right.$ for all $\left.\mathbf{w} \in W\right\}$.
Use the definition of subspace to prove that W^{\perp} is a subspace of \mathbb{R}^{n}.

End of Test. Please fill in the information on the next page.
Have a great summer!

Name: \qquad

Circle the name of your instructor

Jessica Dyer

Mary Glaser Glaser's class: 4-digit secret code which I will use to post grades: \qquad

Hao Liang

Todd Quinto

I pledge that I have neither given nor received assistance on this exam.

Signature \qquad

