Math 70 TUFTS UNIVERSITY May 9, 2016, 8:30-10:30 A.M.
Linear Algebra Final Exam Department of Mathematics

Instructions: No notes or books are allowed. All calculators, cell phones, or other electronic devices must be
turned off and put away during the exam. Unless otherwise stated, you must show all work to receive full
credit. You are required to sign the last page of your exam. With your signature you are pledging that you have neither
given nor received assistance on the exam. Students found violating this pledge will receive an F in the course.
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1. (10 points) For each question, indicate your answer by shading the appropriate box. No partial credit.
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(a) R? is a subspace of R?
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(b) PPy is a subspace of P3 (IP,, is the set of polynomials of degrejfs than or equal to n).
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(¢) Is it possible to have a linear transformation T : R™ — R™ with the property that
T(u) = T'(v) for some pair of distinct vectors w and v in R™ and that T is onto R"?
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(d) Every orthogonal set in R™ has at most n vectors in it.
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(e) If the orthogonal pro]ection of a vector v onto a subspace W equals v, thenv e W.
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2. (2 points) Let V be a vector space. Consider the three sets
i. 51is a linearly independent subset of V but it does not span V;

il. Ss is a spanning set of V but it is not linearly independent, and °
iii. Sy is a basis of V.

Order the sets from smallest to largest in the spaces below.
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3. (6 points) Let Abe ann
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4. (8 points) Let A = [4 1}

A
(a) Find all eigenvalues of A. MEAV r\) ﬂQ&[ ,_-j
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(b) ShowthtA is diagonalizable by finding an invertible matrix P and dia agonal matrix D such that
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5. (10 points) Suppose A is a 4 x 4 matrix and assume A = 0 is an eigenvalue of A.

(a) Define what it means that A = 0 is an eigenvalue of A.
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(b) Use the assumption that A = 0 is an eigenvalue and the definition of linear dependence to prove
that the columns of A are linearly dependent.
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(¢) The maximum 1ank of A (dimension of Col A) is 3
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6. (8 points) Let A = { 4 8 :| . The characteristic polynomial of A is p(\) = (A — 1)(A + 3)%.
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(a) Find a basis for the eigenspace corresponding to A = —3.
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(b) Is A diagonalizable? Justify your answer.
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7. (10 points) Define the transformation T : P, — Mayo by T(a+ bt + ct?) = [ﬂ :,)— &b ; C} )
c

Then T is linear. You do not need to show this.
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LetB={LL.0%) and e={[0 0],[0 0},[1 0],[0 1}}

be bases for P, and M , respectively. Find each of the following:
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(c) The matrix for T relative to the bases B and C. (Referred to as ¢[T]z or ¢ Mg.)
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8. (8 points) Let T' : P, — W be a linear transformation.

Let B = {1,¢,t*} and €= {e”,cos(x),sin(z)} be bases for P, and ¥/, respectively.
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Let M = ¢[T)s = { 0 1 1} be the matrix of the transformation relative to the bases B and C.
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9. (8 points) Let w; = {—1 },wa= |:4 ] and letb = [
1 2

(a) Show that wy and w; are orthogonal. ) ‘ /
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1 2 4
Recal: wy=| -1 |,wa=| 4 |andletb=| 0 |.
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(c) Let A be the matrix A = [wy wo]. Decide whether Ax = b is consistent and explain your answer.
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(d) Find all least-squares solutions to Ax = b. 'ﬂ ‘\]<
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10. (6 points) Let x; = 0 , Xg = (Xl g . Use the Gram-Schmidt process to find an orthogonal

I

basis of W = Span {x1, X2, X3}. You may assume that {x1, X, X3} is a basis of W.
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11. (8 points) Let w and wy be vectors in R®, Let T : R? —s R2 be defined by T(v) = [: :1}
Prove that T is linear.
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12. (8 points) Let V and W be vector spaces and let T': V' — W be a linear transformation that is one-to-one.
Let {v1, V2, v} be a linearly independent set of a vectors in V. Prove that the set {T(v1), T(v2), T(v3)}
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13. (8 points) Let W be a subspace of R™.
Its orthogonal complement is W+ = {x € R*| x - w = 0 forall w € W}.

“ Use the definition of subspace to prove that W+ is a subspace of R". %{ Ll/
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End of Test. Please fill in the information on the next page.
Have a great summer!



Math 70 Final Exam May 9, 2016

Name:

Circle the name of your instructor
Jessica Dyer

Mary Glaser Glaser’s class: 4-digit secret code which I will use to post grades:
Hao Liang

Todd Quinto

I pledge that I have neither given nor received assistance on this exam.

Signature




