
Math 46
Solutions for Final Exam Review

1. In the interests of brevity, I’m not going to write out either the question
or the answer to the various parts of problem one. The answers to the parts
(a), (b), and (c) should all be in your notes, and as for part (d), well ... I
don’t think I should answer that just yet. Maybe after the exam.

2. Let A ∈ Mm×n. Assume that for all x ∈ Rn that Ax = 0. Prove that A
is the zero matrix.

Solution: Well, we know that Ax = 0 for every single vector x ∈ Rn. That
means we can pick any x we want, and plug it in. Me, I want to pick x = ei.
Because then we see that Ax = Aei is the ith column of A. But that’s equal
to 0 by hypothesis! So every column of A is zero, so the whole matrix has
to be zero. ♣

3. Solve the following linear system:

2x + y − 2z = 10
3x + 2y + 2z = 1
5x + 4y + 3z = 4

(a) by row reduction.

(b) by Cramer’s Rule.

Solution: I’m going to omit the details of this, since you can see multitudi-
nous examples of row reduction and Cramer’s Rule in the textbook and in
your notes. However, the answer is that there is only one solution to this
system, and it’s given by x = 1, y = 2, and z = −3. ♣

4. Let A be an m×n matrix and let TA:Rn → Rm be defined by TA(x) = Ax.
Are the following statements true or false? If true, give a proof. If false,
explain why.

(a) dim NulA ≤ n.

Solution: True. The null space of A is a subspace of Rn, so its dimension
has to be at most n. ♣
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(b) rankA ≤ m.

Solution: True. The rank of A is equal to the number of pivots in the
reduced row-echelon form of A. Since each pivot is in a different row, the
number of pivots is no more than the number of rows of A, which is m. ♣

(c) If n > m then the linear transformation TA cannot be one-to-one.

Solution: True. Recall that TA is one-to-one if and only if A has a pivot
in every column (after row-reduction). This is only possible if A has at least
as many rows as columns ... which means that if TA is one-to-one, then we
can’t have n > m. ♣

(d) If n < m then TA cannot be onto.

Solution: True. Recall that TA is onto if and only if A has a pivot in every
row (after row-reduction). This is only possible if A has at least as many
columns as rows ... which means that if TA is onto, then we can’t possibly
have n < m. ♣

(e) If TA is one-to-one and m = n, then TA must be onto.

Solution: True. (Yes, all the answers to question four were “true”.) If
m = n, then A is a square matrix. If A is square, then the IMT applies, and
that means that TA is onto if and only if it’s one-to-one. So we’re done. ♣

5. Let A be an n×n matrix satisfying A3 = In, where In is the n×n identity
matrix. Show that detA = 1.

Solution: Since A3 = I, we know that detA3 = det I = 1. This means that
(detA)3 = 1, since det(AB) = det(A) det(B) for any two matrices A and B.
But if (detA)3 = 1, then assuming that the entries in A are real numbers
(which, in this course, they always will be), we must have detA = 1, as
desired. ♣

6. For the following problems, prove the statement or give a specific coun-
terexample:

(a) W = {p ∈ P2 | (p(3))2 + p(3) = 0} is a subspace of P3.

Solution: This is obviously not true, since W is defined to be a set of
polynomials in P2, so it can’t be a subspace of P3.

If you ignore that typo, and ask if W is a subspace of P2 instead, then
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the answer is still no. To check if W is a subspace, you need to check three
things: the existence of 0 ∈ W , closure under addition, and closure under
scalar multiplication. As it turns out, the zero vector is in W , but W fails
the second and third tests.

For example, let p(t) = −1, the constant polynomial. Then certainly
(p(3))2 + p(3) = (−1)2 + (−1) = 1− 1 = 0, so p(t) ∈ W . But if we multiply
p(t) by the scalar 3, we see that (3p(3))2 + 3p(3) = 9 + 3(−1) = 6 6= 0. Thus,
3p(t) is not in W , so W is not closed under scalar multiplication. ♣

(b) W = {(x, y) ∈ R2 | x+ y = 0} is a subspace of R2.

Solution: This is true. Recall that to check if W is a subspace of R2, we
need to check three things: the existence of 0 ∈ W , closure under addition,
and closure under scalar multiplication. Let’s check them, one by one.

First, it is clear that 0 = (0, 0) is in W . This follows immediately from
the fact that 0 + 0 = 0.

Second, we need to check that W is closed under addition. To do this,
pick any two vectors (x1, y1) and (x2, y2) in W . We want to show that
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) is also in W . This means showing that
x1 + x2 + y1 + y2 = 0, because that’s the definition of W .

But we already know that x1 + y1 = 0, because (x1, y1) ∈ W . And
x2 + y2 = 0, because (x2, y2) ∈ W . So that means that x1 + x2 + y1 + y2 = 0,
so (x1 + x2, y1 + y2) ∈ W , as desired.

Lastly, we need to check that W is cloesd under scalar multiplication. To
do this, pick any vector (x, y) ∈ W , and pick any scalar α ∈ R. We want to
show that α(x, y) = (αx, αy) is in W .

This amounts to showing that αx+αy = 0. But that follows immediately
from the fact that x + y = 0 (which is the definition of what it means for
(x, y) to be in W ), so we’re done.

Since we’ve shown that W satisfies all three criteria for being a subspace
of R2, we’re done. ♣

(c) Let V be a vector space and let f1:V → R and f2:V → R be linear
transformations. Define T :V → R2 by T (v) = (f1(v), f2(v)). Then T is
linear.

Solution: This is true.
In order to prove that T is linear, we need to check two things: that T

respects addition, and that it respects scalar multiplication.
First, we need to show that T respects addition. This means showing

3



that T (x + y) = T (x) + T (y) for any pair of vectors x and y in V . This is
done as follows:

T (x + y) = (f1(x + y), f2(x + y))

= (f1(x) + f1(y), f2(x) + f2(y))

= (f1(x), f2(x)) + (f1(y), f2(y))

= T (x) + T (y)

(Remember that f1 and f2 are both linear – that’s the trick to going from
the first to the second line.)

All that’s left to do is to check that T respects scalar multiplication. This
means checking that T (αx) = αT (x) for any vector x ∈ V and any scalar α.
To wit:

T (αx) = (f1(αx), f2(αx))

= (αf1(x), αf2(x))

= α(f1(x), f2(x))

= αT (x)

so we’re done! ♣

7. Let S =

{[
2 1
0 1

]
,

[
1 0
1 1

]
,

[
8 2
4 6

]}
.

(a) Decide whether S is independent.

Solution: No, S is not independent, because we have the linear relation:

2

[
2 1
0 1

]
+ 4

[
1 0
1 1

]
=

[
8 2
4 6

]
Now, if you didn’t magically spot this, you probably needed to use a

coordinate mapping to R4. Using the following basis for M2×2:

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

the three vectors in S correspond to the following vectors in R4:

[S]B =




2
1
0
1

 ,


1
0
1
1

 ,


8
2
4
6
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The independence of S is equivalent to the independence of [S]B; that is, S
is linearly independent if and only if [S]B is linearly independent.

But we have an easy way of checking the independence of vectors in R4,
which is to make a matrix A whose columns are the vectors in [S]B and row
reduce. [S]B is linearly independent if and only if the reduced row-echelon
form of A has a pivot in every column. In our case, the third column is
missing a pivot (I’m omitting all the calculations here), so it’s dependent
on the first two columns, so [S]B is linearly dependent, so S is also linearly
dependent. ♣

(b) Let W = Span S. Use the result of (a) to find a basis of W that is a
subset of S. Find dimW .

Solution: From the solution to part (a), we know that we can find such a
basis by just deleting the vectors in S that correspond to non-pivot columns
in A. This means deleting just the last vector, so the desired basis is:

B =

{[
2 1
0 1

]
,

[
1 0
1 1

]}

Thus, the dimension of W is 2, the number of vectors in a basis of W . ♣

(c) Determine whether

[
5 1
−1 9

]
∈ W =Span S.

Solution: Once again, we use the coordinate mapping to R4. Let’s give this
vector a name – call it v. Using the same basis B as before, we convert v
into the following column vector:

[v]B =


5
1
−1

9


By the properties of the coordinate mapping, we know that v is in the span
of S if and only if [v]B is in the span of [S]B. This last question is easy to
resolve: just make an augmented matrix A whose first two columns are in
the basis of W we found above, and whose last column is [v]B. Put A in
row-echelon form. If there is a pivot in the last column, then [v]B will not
be in the span of [S]B, and if there is no pivot in the last column, then [v]B
will be in the span of [S]B.
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As it happens (and I’m again omitting all the calculations), you do find
a pivot in the last column, so [v]B is not in the span of [S]B, and therefore v
is not in the span of S. ♣

8. If you are given a square upper triangular matrix, how would you tell at
a glance whether or not it is invertible? Explain your answer using deter-
minants. How would you tell at a glance the eigenvalues of the matrix and
their multiplicities?

Solution: The determinant of a triangular matrix is the product of the diag-
onal entries. By the IMT, a matrix is invertible if and only if its determinant
is not zero. Therefore, an upper triangular matrix is invertible if and only if
all of its diagonal entries are nonzero.

Moreover, the eigenvalues of a triangular matrix are precisely its diagonal
entries, and the number of times each eigenvalue appears is precisely its
algebraic multiplicity. Therefore, you can read the eigenvalues of an upper
triangular matrix and their multiplicities directly off the diagonal. ♣

9. Let V and W be vector spaces and let T :V → W be a linear transforma-
tion.

(a) Let S = {v1,v2,v3, . . . ,v`} be a set of vectors that spans V . Prove
that the set T (S) = {T (v1), T (v2), T (v3), . . . , T (v`)} spans range T in W .

Solution: Let x be any vector in range T . Then by the definition of range
T , we know that x can be written in the form x = T (v) for some v ∈ V .

Now, S spans V , so we can write v = c1v1 + . . . + c`v` as a linear
combination of the elements of S. Applying T to both sides of this expression
gives x = T (v) = T (c1v1 + . . .+ c`v`) = c1T (v1) + . . .+ c`T (v`), so x can be
written as a linear combination of the set T (S). This means that x is in the
span of T (S), so T (S) spans range T , as desired. ♣

(b) Assume T is one-to-one, and assume S is a basis of V . Prove that
the set T (S) is independent.

Solution: First, let’s do the straightforward solution. Consider the equation
c1T (v1) + . . . c`T (v`) = 0, and let’s try to prove that c1 = . . . = c` = 0.
If we can do that, then we’ll have shown that T (S) is linearly independent,
because we’ll have shown that if a linear combination of elements of T (S)
equals zero, then that linear combination has all its coefficients equal to zero.
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So, assume c1T (v1) + . . . c`T (v`) = 0. Then because T is linear, we
have T (c1v1 + . . . + c`v`) = 0. But T is one-to-one, so we can conclude
that c1v1 + . . . + c`v` = 0. But we know that S = {v1,v2,v3, . . . ,v`}
is a basis of V , so in particular it’s linearly independent! Which means
that c1 = . . . = c` = 0, which is what we wanted. Thus, T (S) is linearly
independent, as desired.

Now, that’s not how the professionals would prove this. They’d argue as
follows. Since T is one-to-one, its nullity must be zero, so by Rank-Nullity
rankT must equal dimV = `. By part (a), we know that T (S) spans range
T . We also know that it contains ` vectors. Therefore, it must be a basis of
range T , and therefore in particular must be linearly independent. ♣

(c) Define L:P3 → R3 by L(p) = (p(0), p(1), p(3)). Show that L is a
linear transformation.

Solution: We have two things to check:

L(p+ q) = ((p+ q)(0), (p+ q)(1), (p+ 1)(3))

= (p(0) + q(0), p(1) + q(1), p(3) + q(3))

= (p(0), p(1), p(3)) + (q(0), q(1), q(3))

= L(p) + L(q)

and

L(αp) = ((αp)(0), (αp)(1), (αp)(3))

= (αp(0), αp(1), αp(3))

= α(p(0), p(1), p(3))

= αL(p)

Since both criteria are satisfied by L, it must be linear, by definition. ♣

(d) Use the result of (a) and the basis B = {1, t, t2, t3} of P3 to find a
spanning set of range L. Find a subset of this spanning set that is a basis of
range L.

Solution: By part (a), we know that L(B) is a spanning set of range L. We
calculate thus:

L(B) = {L(1), L(t), L(t2), L(t3)} = {(1, 1, 1), (0, 1, 3), (0, 1, 9), (0, 1, 27)}
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By using a coordinate mapping (or by another method, explained below), you
find that the first three vectors in T (B) are linearly independent, and that the
fourth depends on the first three ((0, 1, 27) = (0, 1, 3)+4((0, 1, 9)−(0, 1, 3))).
Thus, the first three vectors in T (B) are a basis of range L.

Alternatively, you could reason as follows. Let’s say that p(t) ∈ P3 was
a polynomial in the kernel of L. Then we’d have L(p) = 0, which means
(p(0), p(1), p(3)) = (0, 0, 0). This means that 0,1, and 3 are all roots of p(t)!
So we can factor p(t) = c(t)(t− 1)(t− 3) = c(t3− 4t2 + 3t) for some constant
c.

This means we know exactly what the kernel of L is – it’s precisely the
multiples of the polynomial p(t) = t3 − 4t2 + 3t! In particular, it’s one-
dimensional, so the nullity of L is 1. By Rank-Nullity, this means that the
rank of L is 3. Since the last vector in L(B) is dependent on the first three
(see the observation above), we know that the first three vectors in L(B)
span range L. But range L is three-dimensional, so they must be a basis of
range L. ♣

10. (a) Let T :V → W be a linear transformation. State the Rank plus
Nullity Theorem for T .

Solution: It’s rank T + nullity T = dimV . ♣

(b) Let T :M2×2 → R6 be a linear transformation. If nullity T ≤ 2, what
are the possible values of rank T?

Solution: We know that the dimension of M2×2 is 4. Therefore, by the
Rank-Nullity Theorem stated above, it follows that if the nullity of T is at
most 2, then the rank of T must be at least 2, but no bigger than 4 (since
rank T ≤ dimM2×2). ♣

(c) Let V be a finite dimensional vector space and let T :V → R5 be a
linear transformation. If T is onto and nullity T is 3, what is dimV ?

Solution: Since T is onto, we know that rank T = dimR5 = 5. We’re told
that the nullity of T is 3. Therefore, by Rank-Nullity, dimV must be equal
to 5+3=8. ♣

(d) Let V be a finite dimensional vector space and let T :V → V be linear.
Prove that if T is one-to-one then T is onto.

Solution: Let B be a basis of V . Then T is one-to-one if and only if the
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matrix [T ]B has a pivot in every column (after row reduction). The matrix
[T ]B is square, since T goes from V to itself. Therefore we can conclude that
[T ]B has a pivot in every row. But this implies immediately that T has to be
onto. ♣

11. Let A =

 −5 −9 −6
0 −2 0
3 9 4

.

(a) Decide whether A is diagonalizable. If so, find a diagonal matrix D
and an invertible matrix P such that D = P−1AP .

Solution: First, we need to find the characteristic polynomial of A, which
is det(A−λI) = −λ3 + 5λ2− 8λ+ 4 = −(λ− 1)(λ+ 2)2. (If you had trouble
factoring that polynomial, bear in mind that all the roots of a polynomial
have to divide evenly into the constant coefficient. So when you’re looking
for roots, try plugging in plus or minus the factors of the constant coefficient.
In this case, that means the factors of 4, which are ±1, ±2, and ±4.)

Anyway, the roots of the polynomial are 1 and -2, so those are the eigen-
values. Now we need to find bases for the corresponding eigenspaces. Always
check the eigenvalues in descending order of multiplicity when you’re doing
a diagonalization, because if the matrix is not diagonalizable, it’ll be the
eigenvalues of high multiplicity that will let you know.

So, let’s start by finding a basis for the (-2)-eigenspace. This means
finding a basis for the nullspace of the matrix A+ 2I:

A+ 2I =

 −3 −9 −6
0 0 0
3 9 6


It’s pretty easy to see from here that the nullspace ofA+2I is two-dimensional,
and that a basis for said nullspace is given by:

 −3
1
0

 ,
 −2

0
1




At this point, we know that the matrix is going to turn out diagonlizable,
because the (-2)-eigenspace is 2-dimensional, and we know we’re going to get
at least a one-dimensional eigenspace out of λ = 1 (eigenspaces are never
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0-dimensional), which makes three in total, which is all we need. Which
is a pity, because if A were not diagonalizable, we’d have nothing to do in
part (b). But which, for the same reason, makes it not surprising that A is
diagonalizable.

Anyway, back to mathematics. We still have to find the 1-eigenspace of
A. This is the same as the nullspace of A− I:

A− I =

 −6 −9 −6
0 −3 0
3 9 3


After a bit of calculation, you find that this nullspace is one-dimensional,
and a basis for it is given by: 

 1
0
−1




The diagonal matrix D and the invertible matrix P that we want are
simply the eigenvalues and eigenvectors of A, respectively, arranged appro-
priately and in the same order:

D =

 1 0 0
0 −2 0
0 0 −2

 P =

 1 −3 −2
0 1 0
−1 0 1


(b) If A is diagonalizable, use the result of (a) to find A10.

Solution: We know that D = P−1AP , so that A = PDP−1, so that A10 =
PD10P−1. We can easily calculate D10:

D10 =

 1 0 0
0 1024 0
0 0 1024



Thus, we get A10 = PD10P−1 =

 2047 3069 2046
0 1024 0

−1023 −3069 −1022

. ♣

12. Determine whether each of the following matrices is diagonalizable. Jus-
tify your answer. If A is diagonalizable, find a diagonal matrix similar to
A.
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(a) A =


−1 0 0 0

0 3 1 0
0 0 3 0
0 0 0 1


Solution: No, it is not diagonalizable. The eigenvalues of A are -1, 3, and
1, and only 3 has a multiplicity higher than 1, so we check that eigenspace
first. If its dimension is any smaller than 2 (the algebraic multiplicity), then
we know that A is not diagonalizable.

So, we compute the null space of A − 3I, and check its dimension. We
get:

A− 3I =


−4 0 0 0

0 0 1 0
0 0 0 0
0 0 0 −2


This matrix plainly has three pivots, so it has rank three, so its nullity is but
one. This means that the 3-eigenspace of A is only one-dimensional, so since
3 has algebraic multiplicity 2, it follows that A is not diagonalizable. ♣

(b) A =


3 0 0 0
0 −1 1 0
0 0 3 0
0 0 0 1


Solution: Yes, this matrix is diagonalizable. Again, the eigenvalues are -1, 3,
and 1, and again only 3 has multiplicity higher than one. Therefore, as long
as the 3-eigenspace is 2-dimensional, we’ll know that A is diagonalizable.

So, we check the dimension of the null space of A− 3I:

A− 3I =


0 0 0 0
0 −4 1 0
0 0 0 0
0 0 0 1


This matrix has only two pivots, so its rank is two, so its nullity must also
be two. Therefore, the 3-eigenspace in this case is 2-dimensional, so since
the algebraic multiplicity of 3 is two, this means that A is diagonalizable.

Sadly, this means we have extra work to do, namely, to find a diagonal
matrix similar to A. But this is easy – just list the eigenvalues of A down
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the diagonal:

D =


−1 0 0 0

0 3 0 0
0 0 3 0
0 0 0 1



13. Let A be a 4× 4 matrix with characteristic polynomial (λ2 − 1)(λ− 3)2.
Then A is diagonalizable if and only if the 3-eigenspace has what dimension?

Solution: This is the theory behind problem 12. The answer is two, because
we need the algebraic multiplicity of each eigenvalue to equal the dimension
of the corresponding eigenspace. For eigenvalues of multiplicity one, this is
automatically true, so all we need to worry about is the eigenvalue 3, which
has multiplicity two. ♣

14. Let A be a matrix with eigenvalues 1, -2, and 4. Is there necessarily a
matrix B such that B2 = A? Prove your answer.

Solution: No, there cannot be such a matrix B, as long as B has real
entries. The easiest way to see this is to notice that the determinant of A is
the product of its eigenvalues, which is -8. If there were a matrix B such that
B2 = A, then we’d have −8 = detA = detB2 = (detB)2, which is plainly
impossible if detB is a real number! So there can be no such B. ♣

15. Define a linear transformation T :P2 → P2 by

T (a+ bt+ ct2) = (a− b+ 3c) + (2b+ c)t+ 3ct2

for all a+ bt+ ct2 ∈ P2 and let B = {1, t, t2} be the standard basis of P2.

(a) Find A = [T ]B.

Solution: We can calculate this using the standard technique:

[T ]B =
[

[T (1)]B [T (t)]B [T (t2)]B
]

=
[

[1]B [−1 + 2t]B [3 + t+ 3t2]B
]

=

 1 −1 3
0 2 1
0 0 3
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(b) Determine whether T is diagonalizable. If yes, find a basis C of P2 such
that the matrix of T with respect to C, namely [T ]C, is a diagonal matrix,
and find [T ]C. If T is not diagonalizable, explain why not.

Solution: We know that T is diagonalizable if and only if [T ]B is diago-
nalizable, so let’s check if [T ]B is diagonalizable. Happily, [T ]B is an upper
triangular matrix, so we can read the eigenvalues off the main diagonal:
they’re 1, 2, and 3. In particular, they’re all different! So [T ]B has to be
diagonalizable.

So let’s find the eigenvectors. (We’re not doing this just for fun – we’re go-
ing to need to know them later.) First, let’s find a basis for the 1-eigenspace.
This means finding a basis for the nullspace of A− I:

A− I =

 0 −1 3
0 1 1
0 0 2


The last two columns are both pivot columns, and the first column is zero,
so the nullspace of this matrix is spanned by: 1

0
0


Next, let’s do the 2-eigenspace. This means finding the nullspace of A−2I:

A− 2I =

 −1 −1 3
0 0 1
0 0 1


A bit of calculation shows that the nullspace of A − 2I (and hence the 2-
eigenspace of A) is spanned by:  1

−1
0


Finally, there’s the 3-eigenspace. We have:

A− 3I =

 −2 −1 3
0 −1 1
0 0 0
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After a bit of calculation, you find that the nullspace of A − 3I is spanned
by:  1

1
1


All three of these vectors are eigenvectors of A = [T ]B, with different

eigenvalues, so they must be linearly independent. So, in summary, we’ve
found the following basis of R3 which consists entirely of eigenvectors of [T ]B:

 1
0
0

 ,
 1
−1

0

 ,
 1

1
1




At this point, all we need to do is convert these column vectors back into
polynomials via the B-coordinate mapping, and we’ll have our basis C. Thus,
we have:

C = {1, 1− t, 1 + t+ t2}
and

[T ]C =

 1 0 0
0 2 0
0 0 3


because any diagonal matrix representing T must have the eigenvalues of T
down the main diagonal, in the same order as in the corresponding basis C.

Let’s explain why this works. We want a basis C such that [T ]C is a
diagonal matrix. What we’re actually claiming is the following:

Theorem 1 Let V be a finite dimensional vector space, and let T :V → V
be a linear transformation. Let C be a basis of V . Then [T ]C is a diagonal
matrix if and only if every vector in C is an eigenvector of T .

Note that in light of this theorem, once we’ve found a basis of V consisting
entirely of eigenvectors of T , we can use that basis for C.

Proof of Theorem: Let’s say we have a basis C = {v1, . . . ,vn} of V . Then:

[T ]C =
[

[T (v1)]C . . . [T (vn)]C
]

If all the vectors vi are eigenvectors of T , then for each i, we have T (vi) =
λivi, where λi is the eigenvalue corresponding to vi. Thus, we have [T (vi)]C =
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λi[vi]C = λiei, since the vectors vi correspond to the standard basis vectors
in Rn via the C-coordinate mapping. But that means that the columns of
[T ]C are just multiples of the standard basis vectors, which means that [T ]C
must be a diagonal matrix, with the eigenvalues down the diagonal.

Conversely, say that [T ]C is a diagonal matrix, with diagonal entries
λ1, . . . , λn. Then the ith column of [T ]C is equal to λiei, so we have [T (vi)]C =
λiei = λi[vi]C = [λivi]C, so T (vi) = λivi, which means precisely that vi is a
λi-eigenvector of T . ♣

16. Let W = span


 1

1
2

 ,
 2

0
1


.

(a) Use the Gram-Schmidt process to find an orthonormal basis of W .

Solution: The first thing to notice is that we want an orthonormal basis, not
just an orthogonal one. That means that we’ll have to add an extra stage to
the Gram-Schmidt process described in the book – we’ll need to normalise
the vectors in our orthogonal basis so that they have length one. (Remember
that an orthonormal basis is an orthogonal basis in which each vector has
length one.)

Anyway, so first let’s use the Gram-Schmidt process to find an orthogonal
basis of W , and then we’ll normalise. We have:

v1 =

 1
1
2



v2 =

 2
0
1

−

 2

0
1

 ·
 1

1
2

÷
 1

1
2

 ·
 1

1
2



 1

1
2



=

 2
0
1

− (4÷ 6)

 1
1
2



=

 4/3
−2/3
−1/3


This gives us an orthogonal basis of W . Now, all we need to do is divide each
of these vectors by their lengths, and we’ll have an orthonormal basis. We
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have ||v1|| =
√

6 and ||v2|| =
√

21/3, so we get the following orthonormal
basis of W :  1√

6

 1
1
2

 , 1√
21

 4
−2
−1




(b) Find a basis of W⊥.

Solution: If you have taken Math 13, you’ll know that a basis for W⊥ can
be found simply by taking the cross product of the two given vectors. But
let’s solve this a different way instead.

Choose any vector in W⊥:

v =

 x
y
z


We know that x, y, and z satisfy the two following equations, which encode
the fact that v is perpendicular to the two vectors which span W :

x+ y + 2z = 0

2x+ z = 0

If we solve this system of equations, we’ll have found our basis for W⊥. A
bit of calculation shows that a basis for the solution space of this system is
given by: 

 1
3
−2




So this must also be a basis for W⊥. ♣

17. Let B =


 1

0
−1

 ,
 1

2
1


. Show that B is an orthogonal set.

Solution: This is easy. All we need to do is check that the two vectors
are orthogonal to one another, which is a simple dot product calculation:
1 + 0− 1 = 0. Since the answer is 0, the two vectors are orthogonal. ♣

Let x ∈ R3. Find the orthogonal projection of x onto W = spanB.
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Solution: Write x =

 x
y
z

. Denote the two vectors in B by v1 and v2,

respectively. Then:

projWx =
x · v1

v1 · v1

v1 +
x · v2

v2 · v2

v2

=
x− z

2

 1
0
−1

+
x+ 2y + z

6

 1
2
1



=
1

3

 2x+ y − z
x+ 2y + z
−x+ y + 2z



18. Let S = {u1, . . . ,uk} be an orthonormal set in Rn. Prove that S is
independent.

Solution: This is straight from the book, since any orthonormal set is also
an orthogonal set. See Theorem 4 on page 379 of the textbook. ♣

(a) Let W = spanS and let w ∈ W . Prove that w = (w · u1)u1 + . . . +
(w · uk)uk.

Solution: This is also straight from the textbook, from Theorem 5 on page
379. The only thing to notice is that since S is an orthonormal set, it follows
that ui · ui = 1 for each i. ♣

(b) Why does the result of (a) show that if w ∈ spanS, then projWw = w?

Solution: The definition of projWw is written out in Theorem 8 on page
390 of the textbook. Once you notice that ui ·ui = 1 for all i, this definition
coincides exactly with the right hand side of the equation in part (a). ♣

19. Consider the system

 1 2
2 4
2 2

x =

 3
3
6

.

(a) Are there solutions to this system?

Solution: No, there aren’t. You can check this by row reduction. ♣

(b) Find all least squares solutions to the system.
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Solution: The first step is to compute the least-squares system ATAx =
ATb:

ATA =

[
9 14

14 24

]
AT

 3
3
6

 =

(
21
30

)

So to find least squares solutions, we need to find solutions to the 2 × 2
system: [

9 14
14 24

]
x =

(
21
30

)
A bit of row reduction shows that there is only one solution to the 2 × 2
system, and therefore only one least squares solution to the original system.
That solution is:

x =
1

5

(
21
−6

)
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