MATH 46, REVIEW FOR FINAL

1. (a) Let $A \in M_{m \times n}, A=\left[a_{i j}\right]$. Define the following terms: cofactor of $a_{i j}$, $\operatorname{det} A$, eigenvalue of A, eigenvector associated to an eigenvalue of A, eigenspace associated to eigenvalue of A, A is diagonalizable.
(b) For a function $T: V \rightarrow V$ define the following terms: T is a linear transformation, T is diagonalizable.
(c) Describe the least squares method to solve $A \mathbf{x}=\mathbf{b}$. When might you use it to solve $A \mathbf{x}=\mathbf{b}$?
(d) What definitions do you think will be on the test?
2. Let $A \in M_{m \times n}$. Assume for all $\mathbf{x} \in \mathbb{R}^{n}$ that $A \mathbf{x}=\mathbf{0}$. Prove that A is the zero matrix.

$$
2 x+y-2 z=10
$$

3. Solve the following linear system: $3 x+2 y+2 z=1$

$$
5 x+4 y+3 z=4
$$

(a) by row reduction.
(b) by Cramer's Rule. [NOT COVERED IN 2018]
4. Let A be an $m \times n$ matrix and let $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be defined by $T_{A}(\mathbf{x})=A \mathbf{x}$. Are the following statements true or false. If true give a proof, if false explain why.
(a) $\operatorname{dim} \operatorname{Nul} A \leq n$.
(b) $\operatorname{rank} A \leq m$.
(c) If $n>m$ then the linear transformation T_{A} cannot be one-to-one.
(d) If $n<m$ then T_{A} cannot be onto.
(e) If T_{A} is one-to-one and $m=n$ then T_{A} must be onto.
5. Let A be an $n \times n$ matrix satisfying $A^{3}=I_{n}$, where I_{n} is the $n \times n$ identity matrix. Show that $\operatorname{det} A=1$.
6. For the following problems, prove the statement or give a specific counterexample:
(a) $W=\left\{p \in P_{2} \mid(p(3))^{2}+p(3)=0\right\}$ is a subspace of P_{3}.
(b) $W=\left\{(x, y) \in \mathbb{R}_{2} \mid x+y=0\right\}$ is a subspace of \mathbb{R}_{2}.
(c) Let V be a vector space and let $f_{1}: V \rightarrow \mathbb{R}$ and $f_{2}: V \rightarrow \mathbb{R}$ be linear transformations. Define $T: V \rightarrow \mathbb{R}_{2}$ defined by $T(\mathbf{v})=\left(f_{1}(\mathbf{v}), f_{2}(\mathbf{v})\right) . T$ is linear.
7. Let $S=\left\{\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}8 & 2 \\ 4 & 6\end{array}\right]\right\}$.
(a) Decide whether S is independent.
(b) Let $W=\operatorname{span} S$. Use the result of (a) to find a basis of W that is a subset of S. Find $\operatorname{dim} W$.
(c) Determine whether $\left[\begin{array}{rr}5 & 1 \\ -1 & 9\end{array}\right] \in W=\operatorname{span} S$.
8. If you are given a square upper triangular matrix, how would you tell at a glance whether or not it is invertible? Explain your answer using determinants. How would you tell at a glance the eigenvalues of the matrix and their multiplicities?
9. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation.
(a) Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{\ell}\right\}$ be a set of vectors that spans V. Prove that the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right), \ldots, T\left(\mathbf{v}_{\ell}\right)\right\}$ spans range T in W.
(b) Assume T is one-to-one, and assume S is a basis of V. Prove the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right), \ldots, T\left(\mathbf{v}_{\ell}\right)\right\}$ is independent.
(c) Show that $L: P_{3} \rightarrow \mathbb{R}_{3}$ be defined by $L(p)=(p(0), p(1), p(3))$. Prove L is a linear transformation.
(d) Use the result of (a) and the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ of P_{3} to find a spanning set of range L. Find a subset of this spanning set that is a basis of range L.
10. (a) Let $T: V \rightarrow W$ be a linear transformation. State the Rank plus Nullity Theorem for T.
(b) Let $T: M_{2 \times 2} \rightarrow \mathbb{R}^{6}$ be a linear transformation. If nullity $T \leq 2$ what are the possible values of rank T ?
(c) Let V be a finite dimensional vector space and let $T: V \rightarrow \mathbb{R}^{5}$ be a linear transformation. If T is onto and nullity $T=3$ what is $\operatorname{dim} V$?
(d) Let V be a finite dimensional vector space and let $T: V \rightarrow V$ be linear. Prove that if T is one-to-one then T is onto.
11. Let $A=\left[\begin{array}{rrr}-5 & -9 & -6 \\ 0 & -2 & 0 \\ 3 & 9 & 4\end{array}\right]$.
(a) Decide whether A is diagonalizable If so, find a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$.
(b) If A is diagonalizable, use the result of (a) to find A^{10}.
12. Determine whether or not each of the following matrices, A, is diagonalizable. Justify your answer. If A is diagonalizable find a diagonal matrix similar to A.

$$
\text { (a) } A=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { (b) } A=\left[\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

13. Let A be a 4×4 matrix with characteristic polynomial $\left(\lambda^{2}-1\right)(\lambda-3)^{2}$. Then A is diagonalizable if and only if the eigenspace associated with the eigenvalue 3 has what dimension?
14. Let A be a matrix with eigenvalues $1,-2$, and 4 . Is there necessarily a matrix B such that $B^{2}=A$? Prove your answer.
15. Define a linear transformation $T: P_{2} \rightarrow P_{2}$ by

$$
T\left(a+b t+c t^{2}\right)=(a-b+3 c)+(2 b+c) t+3 c t^{2}
$$

for all $a+b t+c t^{2} \in P_{2}$ and let $\mathcal{B}=\left\{1, t, t^{2}\right\}$ be the standard basis of P_{2}.
(a) Find $A=[T]_{\mathcal{B}}$.
(b) Determine whether T is diagonalizable. If yes, find a basis \mathcal{C} of P_{2} such that the matrix of T with respect to $\mathcal{C},[T]_{\mathcal{C}}$, is a diagonal matrix, and find $[T]_{\mathcal{C}}$. If T is not diagonalizable explain why not.
16. Let $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)\right\}$.
(a) Use the Gram-Schmidt process (§6.4) find an orthonormal basis of W.
(b) Find a basis of W^{\perp}.
17. Let $\mathcal{B}=\left\{\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$. Show that \mathcal{B} is an orthogonal set. Let $\mathbf{x} \in \mathbb{R}^{3}$. Find the orthogonal projection of \mathbf{x} onto $W=\operatorname{span} \mathcal{B}$.
18. Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthonormal set in \mathbb{R}^{n}. Prove S is independent.
(a) Let $W=\operatorname{span} S$ and let $\mathbf{w} \in W$. Prove that $\mathbf{w}=\left(\mathbf{w} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{w} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k}$.
(b) Why does the result of (a) show that, if $\mathbf{w} \in \operatorname{span} S$, then $\operatorname{proj}_{W} \mathbf{w}=\mathbf{w}$?
19. Consider the system $\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 2 & 2\end{array}\right] \mathbf{x}=\left(\begin{array}{l}3 \\ 3 \\ 6\end{array}\right)$.
(a) Are there solutions to this system?
(b) Find all least-squares solutions to the system.

