MATH 46, REVIEW FOR FINAL

- 1. (a) Let $A \in M_{m \times n}$, $A = [a_{ij}]$. Define the following terms: cofactor of a_{ij} , det A, eigenvalue of A, eigenvector associated to an eigenvalue of A, eigenspace associated to eigenvalue of A, A is diagonalizable.
 - (b) For a function $T: V \to V$ define the following terms: T is a *linear transformation*, T is diagonalizable.
 - (c) Describe the least squares method to solve $A\mathbf{x} = \mathbf{b}$. When might you use it to solve $A\mathbf{x} = \mathbf{b}$?
 - (d) What definitions do you think will be on the test?
- 2. Let $A \in M_{m \times n}$. Assume for all $\mathbf{x} \in \mathbb{R}^n$ that $A\mathbf{x} = \mathbf{0}$. Prove that A is the zero matrix.

3. Solve the following linear system:
$$\begin{array}{rcl} 2x + & y - 2z = & 10 \\ 3x + 2y + 2z = & 1 \\ 5x + 4y + 3z = & 4 \end{array}$$

- (a) by row reduction.
- (b) by Cramer's Rule. [NOT COVERED IN 2018]
- 4. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\mathbf{x}) = A\mathbf{x}$. Are the following statements true or false. If true give a proof, if false explain why.
 - (a) dim Nul $A \leq n$.
 - (b) rank $A \leq m$.
 - (c) If n > m then the linear transformation T_A cannot be one-to-one.
 - (d) If n < m then T_A cannot be onto.
 - (e) If T_A is one-to-one and m = n then T_A must be onto.
- 5. Let A be an $n \times n$ matrix satisfying $A^3 = I_n$, where I_n is the $n \times n$ identity matrix. Show that det A = 1.
- 6. For the following problems, prove the statement or give a specific counterexample:
 - (a) $W = \{ p \in P_2 \mid (p(3))^2 + p(3) = 0 \}$ is a subspace of P_3 .
 - (b) $W = \{(x, y) \in \mathbb{R}_2 \mid x + y = 0\}$ is a subspace of \mathbb{R}_2 .
 - (c) Let V be a vector space and let $f_1: V \to \mathbb{R}$ and $f_2: V \to \mathbb{R}$ be linear transformations. Define $T: V \to \mathbb{R}_2$ defined by $T(\mathbf{v}) = (f_1(\mathbf{v}), f_2(\mathbf{v}))$. T is linear.
- 7. Let $S = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 8 & 2 \\ 4 & 6 \end{bmatrix} \right\}.$
 - (a) Decide whether S is independent.
 - (b) Let $W = \operatorname{span} S$. Use the result of (a) to find a basis of W that is a subset of S. Find $\dim W$.
 - (c) Determine whether $\begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix} \in W = \operatorname{span} S.$
- 8. If you are given a square upper triangular matrix, how would you tell at a glance whether or not it is invertible? Explain your answer using determinants. How would you tell at a glance the eigenvalues of the matrix and their multiplicities?
- 9. Let V and W be vector spaces and let $T: V \to W$ be a linear transformation.
 - (a) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_\ell}$ be a set of vectors that spans V. Prove that the set ${T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3), \dots, T(\mathbf{v}_\ell)}$ spans range T in W.
 - (b) Assume T is one-to-one, and assume S is a basis of V. Prove the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3), \dots, T(\mathbf{v}_\ell)\}$ is independent.
 - (c) Show that $L: P_3 \to \mathbb{R}_3$ be defined by L(p) = (p(0), p(1), p(3)). Prove L is a linear transformation.
 - (d) Use the result of (a) and the basis $\mathcal{B} = \{1, t, t^2, t^3\}$ of P_3 to find a spanning set of range L. Find a subset of this spanning set that is a basis of range L.

- 10. (a) Let $T: V \to W$ be a linear transformation. State the Rank plus Nullity Theorem for T.
 - (b) Let $T: M_{2\times 2} \to \mathbb{R}^6$ be a linear transformation. If nullity $T \leq 2$ what are the possible values of rank T?
 - (c) Let V be a finite dimensional vector space and let $T: V \to \mathbb{R}^5$ be a linear transformation. If T is onto and nullity T = 3 what is dim V?
 - (d) Let V be a finite dimensional vector space and let $T: V \to V$ be linear. Prove that if T is one-to-one then T is onto.

11. Let $A = \begin{bmatrix} -5 & -9 & -6 \\ 0 & -2 & 0 \end{bmatrix}$. 9 4 3

- (a) Decide whether A is diagonalizable If so, find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.
- (b) If A is diagonalizable, use the result of (a) to find A^{10} .
- 12. Determine whether or not each of the following matrices, A, is diagonalizable. Justify your answer. If A is diagonalizable find a diagonal matrix similar to A.

(a) $A =$	-1	0	0	ך 0		Γ3	0	0	ך 0	
	0	3	1	0	(b) $1 - $	0	-1	1	0].
	0	0	3	0	(b) $A =$	0	0	3	0	
	0	0	0	1		Lo	0	0	$1 \rfloor$	

- 13. Let A be a 4×4 matrix with characteristic polynomial $(\lambda^2 1)(\lambda 3)^2$. Then A is diagonalizable if and only if the eigenspace associated with the eigenvalue 3 has what dimension?
- 14. Let A be a matrix with eigenvalues 1, -2, and 4. Is there necessarily a matrix B such that $B^2 = A$? Prove your answer.
- 15. Define a linear transformation $T: P_2 \to P_2$ by

$$T(a+bt+ct^{2}) = (a-b+3c) + (2b+c)t + 3ct^{2}$$

for all $a + bt + ct^2 \in P_2$ and let $\mathcal{B} = \{1, t, t^2\}$ be the standard basis of P_2 .

- (a) Find $A = [T]_{\mathcal{B}}$.
- (b) Determine whether T is diagonalizable. If yes, find a basis \mathcal{C} of P_2 such that the matrix of T with respect to \mathcal{C} , $[T]_{\mathcal{C}}$, is a diagonal matrix, and find $[T]_{\mathcal{C}}$. If T is not diagonalizable explain why not.

16. Let
$$W = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\}.$$

- (a) Use the Gram-Schmidt process ($\S6.4$) find an orthonormal basis of W.
- (b) Find a basis of W^{\perp} .

17. Let
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$
. Show that \mathcal{B} is an orthogonal set. Let $\mathbf{x} \in \mathbb{R}^3$. Find the orthogonal projection of \mathbf{x} onto $W = \operatorname{span} \mathcal{B}$.

orthogonal projection of \mathbf{x} onto W = $: \operatorname{span} \mathcal{B}$

- 18. Let $S = {\mathbf{u}_1, \ldots, \mathbf{u}_k}$ be an orthonormal set in \mathbb{R}^n . Prove S is independent.
 - (a) Let $W = \operatorname{span} S$ and let $\mathbf{w} \in W$. Prove that $\mathbf{w} = (\mathbf{w} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{w} \cdot \mathbf{u}_k)\mathbf{u}_k$.
 - (b) Why does the result of (a) show that, if $\mathbf{w} \in \operatorname{span} S$, then $\operatorname{proj}_W \mathbf{w} = \mathbf{w}$?

19. Consider the system
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 2 & 2 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}$$
.

- (a) Are there solutions to this system?
- (b) Find all least-squares solutions to the system.