No books, notes, or calculators are allowed on the exam. Remember to sign your exam book. With your signature, you are pledging that you have neither given nor received help in this exam.

1. (10 points) Let $A=\left(\begin{array}{rrr}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right)$. The eigenvalues of A are 1 and -2 .

Find an orthogonal matrix U such that $U^{T} A U$ is diagonal.
2. (8 points) Apply the Gram-Schmidt Process to the following set of vectors:

$$
u_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad u_{2}=\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

3. (15 points) Let $u_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), u_{2}=\left(\begin{array}{r}2 \\ -1 \\ 0\end{array}\right)$ and let $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$. Let $y=\left(\begin{array}{r}0 \\ 5 \\ -4\end{array}\right)$.
(a) Find the point w in W nearest to y.
(b) Find $z \in W^{\perp}$ such that $y=w+z$.
(c) Find dist (W, y).
(d) The vectors u_{1}, u_{2}, z are linearly independent. How can you see this without calculating a determinant or row reducing?
(e) Find the unit vector in the direction of u_{1}.
4. (5 points) Let $A=\left(\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right)$. Find an eigenvector of A in \mathbf{C}^{2}.
5. (5 points) Fill in the blanks: Let $f(x)=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{d}\right)^{m_{d}}$ be the characteristic polynomial of a matrix A. Then A is diagonalizable if for each $i=1,2, \ldots, d$, the dimension of \qquad equals \qquad .
6. (12 points) Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ be an ordered basis of a vector space V. Suppose $T: V \rightarrow V$ is a linear transformation such that $T\left(v_{1}\right)=-v_{1}$ and $T\left(v_{2}\right)=v_{1}+v_{2}$.
(a) Find $[T]_{\mathcal{B}}$.
(b) Find x_{1}, x_{2} not both 0 such that $T\left(x_{1} v_{1}+x_{2} v_{2}\right)=x_{1} v_{1}+x_{2} v_{2}$.
(c) Find a basis $\left\{u_{1}, u_{2}\right\}$ of V such that both u_{1} and u_{2} are eigenvectors of T.

Exam continues on the other side.
7. (14 points) Let $A=\left(\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right)$, let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(w)=A w$ for all $w \in \mathbb{R}^{2}$, let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{5}{4}$ and let

$$
P=P
$$

the change-of-basis matrix from the ordered basis \mathcal{B} to the standard basis \mathcal{S} of \mathbb{R}^{2}.
(a) Find P.
(b) Find the change-of-basis matrix P.
(c) Find $T\left(v_{1}\right)$ and $T\left(v_{2}\right)$.
(d) Find $\left[T\left(v_{1}\right)\right]_{\mathcal{B}}$ and $\left[T\left(v_{2}\right)\right]_{\mathcal{B}}$.
(e) Find $[T]_{\mathcal{B}}$.
(f) Fill in the blank: $[T]_{\mathcal{B}}[w]_{\mathcal{B}}=$ \qquad for all $w \in \mathbb{R}^{2}$.
(g) Either $P^{-1} A P$ or $P A P^{-1}$ equals $[T]_{\mathcal{B}}$. Which is correct?
8. (12 points) Give the definitions:
(a) A is similar to B.
(b) v is an eigenvector of A.
(c) The $\operatorname{map} T: V \rightarrow W$ is one-to-one.
(d) The set v_{1}, \ldots, v_{p} is linearly independent.
9. (9 points) Let A be $n \times n$. Give three distinct assertions about A which are equivalent to the assertion that $\operatorname{det}(A) \neq 0$.
10. (10 points) Suppose A is a symmetric matrix. Let v_{1} and v_{2} be eigenvectors of A corresponding to distinct eigenvalues λ_{1} and λ_{2}. Fill in the blanks:

$$
\begin{aligned}
\lambda_{1}\left(v_{1} \cdot v_{2}\right) & =\left(\lambda_{1} v_{1}\right) \cdot v_{2} \text { because }(\underline{(a)} \\
& =A v_{1} \cdot v_{2} \\
& =\left(A v_{1}\right)^{T} v_{2} \\
& =\left(v_{1}^{T} A^{T}\right) v_{2} \text { because }(b) \\
& =\left(v_{1}^{T} A\right) v_{2} \text { because } \underline{(c)} \\
& =v_{1}^{T}\left(A v_{2}\right) \text { because } \underline{(d)} \\
& =v_{1}^{T}\left(\lambda_{2} v_{2}\right) \\
& =\lambda_{2}\left(v_{1} \cdot v_{2}\right)
\end{aligned}
$$

Therefore (e)

End of Exam

