MATH 70 SECTION 01 FINAL EXAM
 FALL 2017

This version of the exam is for SECTION 01, taught by Professor Walsh, which meets: Tues/Thurs/Fri 9:30 Do you have the right version of the exam? This is Question 0, and is worth five points.

Problem \#	Point Value	Points
Having the right exam	5	
1	15	
2	10	
3	10	
4	12	
5	8	
6	6	
7	9	
8	8	
9	9	
10	8	
Total	100	

(1) $(5+10=15$ points) Short answer questions: no partial credit, and no work or explanations required:

True or False? (circle your answers)
(a) Suppose A is a 5×3 matrix which has 3 pivots. Let T be the linear transformation defined by $T(\vec{x})=A \vec{x} . T$ is not onto. $\mathrm{T} \quad \mathrm{F}$
(b) Every linearly independent set in \mathbb{R}^{n} is an orthogonal set. $\mathrm{T} \quad \mathrm{F}$
(c) If the dimension of the vector space V is p for some $p \geq 1$, then every set of vectors that spans V has more than p vectors. $\mathrm{T} \quad \mathrm{F}$
(d) There exists a one-to-one linear transformation from \mathbb{P}_{3} to \mathbb{R}^{3}. $\quad \mathrm{T} \quad \mathrm{F}$
(e) Suppose A is an $m \times n$ matrix. Then $\operatorname{Nul} A$ is orthogonal to $\operatorname{Col} A$. T $\quad \mathrm{F}$

Short Answer

(a) Suppose U is a square matrix with orthonormal columns. Explain why U is invertible using theorems from the class.
(b) Suppose a 8×6 matrix A has 4 pivot columns. What is the dimension of $\operatorname{Nul} A$?
(c) Suppose W is a subspace of \mathbb{R}^{n}. If I take the union of orthogonal bases for W and W^{\perp}, why does this set span \mathbb{R}^{n} ?
(d) Gram-Schmidt is an algorithm for doing what?
(e) Suppose A, B are both $n \times n$ matrices for some n. Show that if A is similar to B, then A^{2} is similar to B^{2}.

Questions 2-8 have partial credit, and work/explanations/justifications ARE required:
(2) $(2+4+4=10 \mathrm{pts})$ Consider the matrix A below.

$$
\mathcal{A}=\left(\begin{array}{rr}
3 & 1 \\
1 & -1 \\
-1 & 1 \\
1 & -1
\end{array}\right)
$$

(a) Show that the columns of A are orthogonal.
(b) Show that the vector $\vec{y}=\left[\begin{array}{l}3 \\ 1 \\ 5 \\ 1\end{array}\right]$ is not in $\operatorname{Col} A$.
(c) Find the vector \hat{y} in $\operatorname{Col} A$ that is closest to \vec{y}.
(3) $(2+4+2=10 \mathrm{pts})$ Consider the matrix A below.

$$
A=\left(\begin{array}{rrrr}
4 & 2 & 3 & 3 \\
0 & 2 & h & 3 \\
0 & 0 & 4 & 14 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

(a) What are the 4 eigenvalues of A ? (Note this does not depend on what the value of h is!)
(b) What value of h will make the eigenspace for $\lambda=4$ two dimensional?
(c) Suppose you put this value of h in A. What would you do next to decide whether A was diagonalizable or not? In particular, what would need to be true for A to be diagonalizable?
(4) $(2+3+3+4=12 \mathrm{pts})$ Let $M_{2 \times 2}$ be the vector space of 2×2 real matrices with real entries. Consider the transformation $f: M_{2 \times 2} \rightarrow \mathbb{R}^{2}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left[\begin{array}{c}
3 a+b \\
c+d
\end{array}\right]
$$

(a) Show that f is linear.
(b) Find a matrix for the linear transformation f in terms of the basis:

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

for $M_{2 \times 2}$ and the standard basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ for \mathbb{R}^{2}.
(c) What does it mean for a transformation T to be one-to-one?
(d) Either prove f as above is one-to-one, or find specific matrices that show it is not.
(5) $(2+4+2=8 \mathrm{pts})$ Let W be the subspace with basis $\overrightarrow{v_{1}}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$.
(a) Verify that $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are NOT orthogonal.
(b) Find an orthogonal basis for W by replacing $\overrightarrow{v_{2}}$ with vector a $\overrightarrow{u_{2}}$ that is orthogonal to $\overrightarrow{v_{1}}$ with $\operatorname{Span}\left\{\overrightarrow{v_{1}}, \overrightarrow{u_{2}}\right\}=W$.
(c) Suppose we let \vec{v} we a vector that is not in W. Explain what I would do to find a vector $\overrightarrow{u_{3}}$ such that $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right\}$ is an orthogonal basis for \mathbb{R}^{3}. Draw a schematic diagram if that helps!
(6) (6 pts) Suppose B is the reduced echelon form for the matrix A.

$$
\mathcal{A}=\left(\begin{array}{rrrrr}
1 & 2 & -4 & 3 & 3 \\
5 & 10 & -9 & -7 & 8 \\
4 & 8 & -9 & -2 & 7 \\
-2 & -4 & 5 & 0 & -6
\end{array}\right) \quad B=\left(\begin{array}{rrrrr}
1 & 2 & 0 & -5 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Nul} A$.
(b) Find a basis for $\operatorname{Col} A$.
(c) Let $\vec{b}=\left[\begin{array}{r}2 \\ 8 \\ 4 \\ -17\end{array}\right]$. Suppose $\left[\begin{array}{r}-1 \\ 0 \\ 3 \\ 0 \\ 5\end{array}\right]$ is a solution to the equation $A \vec{x}=\vec{b}$. Describe the solution set to $A \vec{x}=\vec{b}$ in parametric form.
(7) (9 pts) For each of the following give an example of a matrix with the stated property. EXPLAIN why your examples work.
(a) Find a 2×2 matrix that is invertible but not diagonalizable.
(b) Find a 2×2 matrix that is diagonalizable but not invertible.
(c) Find a 2×3 matrix A NOT in reduced echelon form such that the mapping $\vec{x} \mapsto A \vec{x}$ is not onto.
(8) $(6+2=8 \mathrm{pts})$ Consider the matrix A given here:

$$
A=\left(\begin{array}{ll}
1 & -6 \\
2 & -6
\end{array}\right)
$$

(a) Diagonalize the matrix A. That is, find matrices P, D with $A=P D P^{-1}$.
(b) Use your answer from the previous part to *explain how you would* compute A^{37}
(9) $(2+2+6=10 \mathrm{pts})$ Suppose W is a subspace of \mathbb{R}^{n}. Consider the set W^{\perp}.
(a) What does it mean for the a vector \vec{z} from \mathbb{R}^{n} to be in W^{\perp} ?
(b) What do you need to prove to show W^{\perp} is a subspace of \mathbb{R}^{n}.
(c) Show that W^{\perp} is a subspace of \mathbb{R}^{n}.
(10) $(2+6=8 \mathrm{pts})$ Let W and U be subspaces of a vectors space V. Suppose the intersection, $W \cap U$, of W and U contains only the zero vector $\overrightarrow{0}$. Let $\left\{\bar{w}_{1}, \ldots, \bar{w}_{p}\right\}$ and $\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ be bases of W and U, respectively.
(a) What does it mean for the set $\left\{\bar{w}_{1}, \ldots, \bar{w}_{p}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ to be linearly independent - i.e. give the definition of linear independence of this set.
(b) Show that $\left\{\bar{w}_{1}, \ldots, \bar{w}_{p}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ is linearly independent.

This version of the exam is for SECTION 01, taught by Professor Walsh, which meets Tues/Wed/Fri at $9: 30$. Make sure you have the right exam.

Name:

I pledge that I have neither given nor received assistance on this exam.

Signature

