Tufts University Department of Mathematics Exam 2

- 1. (10 points) True/False. Please write the word "true" or "false".
 - (i) If A and B are two $n \times n$ matrices such that $\det(AB) = 4$, then A and B are both invertible.
 - (ii) If H is a subset of a vector space V such that $\vec{0} \in H$, then H is a subspace of V.
 - (iii) If A is an $n \times n$ matrix and $\mathbf{v} \in \mathbb{R}^n$ is a nonzero vector, then the set of solutions of the matrix equation $A\mathbf{x} = \mathbf{v}$ is a subspace of \mathbb{R}^n .
 - (iv) If a set of vectors $\{v_1, \ldots, v_m\}$ in a vector space V spans V, then dim V > m.
 - (v) The vector space P of all polynomials in one variable is infinite-dimensional.
- 2. (10 points) Set $\mathcal{B} = \{v_1, v_2\}$, where $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
 - (i) Using only determinants, show that \mathcal{B} is a basis of \mathbb{R}^2 (do not use row operations).

- (ii) If $[v]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, find v.
- (iii) Find the change-of-coordinates matrix $P_{\mathcal{B}}$ (recall that $P_{\mathcal{B}}$ is the matrix such that $v = P_{\mathcal{B}}[v]_{\mathcal{B}}$, for all $v \in \mathbb{R}^2$).

- 3. (10 points) Let V be a finite-dimensional vector space with basis $\mathcal{B} = \{v_1, \dots, v_n\}$.
 - (i) If $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$, then what is $[v]_B$?

- (ii) The coordinate mapping $v\mapsto [v]_{\mathcal{B}}$ is a linear map from V to what vector space?
- (iii) Show that the coordinate mapping $v \mapsto [v]_{\mathcal{B}}$ is one-to-one by choosing two arbitrary vectors u and v and showing that if $[u]_{\mathcal{B}} = [v]_{\mathcal{B}}$ then u = v.

4. (6 points) Determine whether each of the following is a subspace of \mathbb{P}_2 . You do not need to show your work; no work will be graded.

(i)
$${a+bt+ct^2:b=0}$$
.

(ii)
$${a+bt+ct^2 \mid b=c}$$
.

(iii)
$$\{a + bt + ct^2 : a = 3\}.$$

- 5. (14 points) Determinants.
 - (i) Find the determinant of $A=\begin{pmatrix} 3 & 1 & 2\\ 4 & 0 & 1\\ 9 & 6 & 1 \end{pmatrix}$ using cofactor expansion.

- (ii) Suppose that A is a square matrix with det A = 4. Find the determinant of B, where the matrix B is obtained from A by each of the following operations:
 - (a) Switching two rows of A.
 - (b) Multiplying a row of A by $-\frac{1}{3}$.
 - (c) Adding twice the first row of A to the third row of A.
 - (d) Multiplying A by itself 3 times (ie, $B=A^3$).
 - (e) Inverting A.

- 6. (12 points) Linear independence.
 - (i) Define what it means for a collection of vectors $\{v_1, \dots, v_m\}$ in a vector space V to be linearly independent.

(ii) Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of a vector space V and let $v \in V$ be any vector. Show that the set $\{v_1, \dots, v_n, v\}$ is linearly dependent by finding a dependence relation.

(iii) Let $\mathcal{B} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 . Use the coordinate mapping associated to \mathcal{B} to determine whether or not the set $\mathcal{S} = \{1 + 2t + 3t^2, 4 + 5t + 6t^2, 2 + t\}$

is linearly independent.

7. (12 points) Let
$$A = \begin{pmatrix} 1 & -3 & -2 & 12 & -4 \\ 0 & 7 & 7 & -12 & 11 \\ -4 & -7 & -11 & -13 & -9 \\ -1 & 0 & -1 & -7 & -1 \end{pmatrix}$$
. Then A is row equivalent to the matrix

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(you do not have to verify this). Find bases for

- (i) row A
- (ii) col A
- (iii) nul A

(iv) nul B

8.	$(14 ext{ } ext{ } $	points) Suppose that A is a 4×11 matrix. Find the following:
	(i)	The maximum value of rank A .
	(ii)	The minimum value of rank A .
	(iii)	The maximum value of $\dim(\text{nul }A)$.
	(iv)	The minimum value of $\dim(\text{nul }A)$.
	(v)	Row A is a subspace of
	(vi)	Col A is a subspace of
	(vii)	Nul A is a subspace of
9.		points) Let V and W be vector spaces, and let $T:V\to W$ be a linear map. Define the kernel of T .
æ	(ii)	Define the range of T .
	(iii)	Prove that the kernel of T is a subspace of $V_{\mathbb{R}}$ WARNING: Do NOT be tempted to use matrices.