1.8 Introduction to Linear Transformations

Another way to view $A \mathbf{x}=\mathbf{b}$:
Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A \mathbf{x}$ or \mathbf{b}.

EXAMPLE:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-12 \\
-4
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Suppose A is $m \times n$. Solving $A \mathbf{x}=\mathbf{b}$ amounts to finding all in \mathbf{R}^{n} which are transformed into vector \mathbf{b} in \mathbf{R}^{m} through multiplication by A.

transformation
"machine"

Matrix Transformations

A transformation T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbf{R}^{n} a vector $T(\mathbf{x})$ in \mathbf{R}^{m}.

Terminology:

$$
\mathbf{R}^{n}: \text { domain of } T \quad \mathbf{R}^{m}: \text { codomain of } T
$$

$T(\mathbf{x})$ in \mathbf{R}^{m} is the image of \mathbf{x} under the transformation T
Set of all images $T(\mathbf{x})$ is the range of T

EXAMPLE: Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Define a transformation
$T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
Then if $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$,

$$
T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right]
$$

EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -5 & 10 & -15\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$,
$\mathbf{b}=\left[\begin{array}{c}2 \\ -10\end{array}\right]$ and $\mathbf{c}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Then define a transformation
$T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. Find an \mathbf{x} in \mathbf{R}^{3} whose image under T is \mathbf{b}.
b. Is there more than one \mathbf{x} under T whose image is \mathbf{b}. (uniqueness problem)
c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

Solution: (a) Solve $\underline{T(x)}=\underline{b}$ for \mathbf{x}.
I.e., solve $A_{x}=b$ or

$$
\left[\begin{array}{rrr}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-10
\end{array}\right]
$$

Augmented matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
-5 & 10 & -15 & -10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
x_{1}=2 x_{2}-3 x_{3}+2
$$

x_{2} is free
x_{3} is free

$$
\begin{gathered}
\text { Let } x_{2}=ـ 1 \text { and } x_{3}=\frac{1}{1} . \text { Then } x_{1}=1 . \\
\text { So } \mathbf{x}=\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

(b) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$?

Free variables exist
\Downarrow
There is more than one \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$
(c) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{c}$? This is another way of asking if $A \mathbf{x}=\mathbf{c}$ is Consistent

Augmented matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 3 \\
-5 & 10 & -15 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

\mathbf{c} is not in the \qquad of T.

Matrix transformations have many applications - including computer graphics.

EXAMPLE: Let $A=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]$. The transformation
$T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(\mathbf{x})=A \mathbf{x}$ is an example of a contraction transformation. The transformation $T(\mathbf{x})=A \mathbf{x}$ can be used to move a point \mathbf{x}.

$$
\mathbf{u}=\left[\begin{array}{l}
8 \\
6
\end{array}\right] \quad T(\mathbf{u})=\left[\begin{array}{rr}
.5 & 0 \\
0 & .5
\end{array}\right]\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

Linear Transformations
If A is $m \times n$, then the transformation $T(\mathbf{x})=A \mathbf{x}$ has the following properties:

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =A(\mathbf{u}+\mathbf{v})=\underline{A u}+A v \\
& =T(u)+\underline{T(v)}
\end{aligned}
$$

and

$$
T(c \mathbf{u})=A(c \mathbf{u})=\quad \subset A \mathbf{u}=\underline{C} T(\mathbf{u})
$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and all scalars c.

DEFINITION

A transformation T is linear if:
i. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T.
ii. $T(c \mathbf{u})=c T(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Every matrix transformation is a linear transformation.
RESULT If T is a linear transformation, then

$$
T(\mathbf{0})=\mathbf{0} \quad \text { and } \quad T(c \mathbf{u}+d \mathbf{v})=c \mathbf{T}(\mathbf{u})+d \mathbf{T}(\mathbf{v})
$$

Proof:

$$
\begin{aligned}
& T(\mathbf{0})=T(0 \mathbf{u})=\underline{O} T(\mathbf{u})=\underline{O} . \\
& T(c \mathbf{u}+d \mathbf{v})=T(c u)+T(d v) \\
& =\quad c T(u)+\underline{d} T(v)
\end{aligned}
$$

EXAMPLE: Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and
$\mathbf{y}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is a linear transformation
which maps \mathbf{e}_{1} into \mathbf{y}_{1} and \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of

Solution: First, note that

Also

$$
\begin{gathered}
T\left(\mathbf{e}_{1}\right)=\frac{y_{1}}{} \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\underline{y_{2}} . \\
\underline{3} \mathbf{e}_{1}+\underline{2} \mathbf{e}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{gathered}
$$

Then

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=T\left(\underline{3} \mathbf{e}_{1}+2 \mathbf{e}_{2}\right)= \\
& \underline{3} T\left(\mathbf{e}_{1}\right)+\underline{2} T\left(\mathbf{e}_{2}\right)=3 y_{1}+2 y_{2} \\
&=\left[\begin{array}{l}
3 \\
2 \\
8
\end{array}\right]
\end{aligned}
$$

Also

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(x_{1} \mathbf{e}_{1}+\underline{x_{2}} \mathbf{e}_{2}\right)= \\
& \quad \underline{x_{1}} T\left(\mathbf{e}_{1}\right)+\underline{x_{1}} T\left(\mathbf{e}_{2}\right)=x_{1} y_{1}+x_{2} y_{2} \\
& =x_{1}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
2 x_{1}+x_{2}
\end{array}\right]
\end{aligned}
$$

EXAMPLE: Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ such that $T\left(x_{1}, x_{2}, x_{3}\right)=\left(\left|x_{1}+x_{3}\right|, 2+5 x_{2}\right)$. Show that T is a not a linear transformation.

Solution: Another way to write the transformation:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\left|x_{1}+x_{3}\right| \\
2+5 x_{2}
\end{array}\right]
$$

Provide a counterexample - example where $T(\mathbf{0})=\mathbf{0}$, $T(c \mathbf{u})=c \mathbf{T}(\mathbf{u})$ or $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ is violated.

A counterexample:

$$
T(\mathbf{0})=T\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \neq \vec{\longrightarrow}
$$

which means that T is not linear.

Another counterexample: Let $c=-1$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then

$$
T(c \mathbf{u})=T\left(\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
|-1+-1| \\
2+5(-1)
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

and

$$
c T(\mathbf{u})=-1 T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=-1\left[\begin{array}{l}
|1| \\
2+5(1)
\end{array}\right]=\left[\begin{array}{l}
1 \\
7
\end{array}\right] .
$$

Therefore $T(c \mathbf{u}) \neq \subset T(\mathbf{u})$ and therefore T is not linear .

