1.7 Linear Independence

A homogeneous system such as

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

can be viewed as a vector equation

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

The vector equation has the trivial solution $\left(x_{1}=0, x_{2}=0\right.$, $x_{3}=0$), but is this the only solution?

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists weights c_{1}, \ldots, c_{p}, not all 0 , such that

$$
\begin{gathered}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \\
\uparrow \\
\text { linear dependence relation } \\
\text { (when weights are not all zero) }
\end{gathered}
$$

EXAMPLE Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-3 \\ 9 \\ 3\end{array}\right]$.
a. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Solution: (a)

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Augmented matrix:

$$
\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} is a free variable \Rightarrow there are nontrivial solutions.
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly dependent set
(b) Reduced echelon form: $\left[\begin{array}{cccc}1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \begin{aligned} x_{1} & =-33 x_{3} \\ x_{2} & =18 x_{3} \\ x_{3} & =x_{3}\end{aligned}$

Let $x_{3}=\underline{2}$ (any nonzero number).

Then $x_{1}=\underline{-66}$ and $x_{2}=\underline{36 .}$.
$-66\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]+\underline{36}\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right]+\underline{2}\left[\begin{array}{r}-3 \\ 9 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
or

$$
-\underline{66} \mathbf{v}_{1}+\underline{36} \mathbf{v}_{2}+\underline{2} \mathbf{v}_{3}=\mathbf{0}
$$

(one possible linear dependence relation)

Linear Independence of Matrix Columns

A linear dependence relation such as

$$
-33\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+18\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+1\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

can be written as the matrix equation:

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{r}
-33 \\
18 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

1. A Set of One Vector

Consider the set containing one nonzero vector: $\left\{\mathbf{v}_{1}\right\}$
The only solution to $x_{1} \mathbf{v}_{1}=0$ is $x_{1}=0$.

So $\left\{\mathbf{v}_{1}\right\}$ is linearly independent when $\mathbf{v}_{1} \neq \mathbf{0}$.

2. A Set of Two Vectors

EXAMPLE Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
4 \\
2
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

a. Determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly dependent set or a linearly independent set.
b. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_{2}=\underline{2} \mathbf{u}_{1}$. Therefore

$$
\underline{2} \mathbf{u}_{1}+\ldots \mathbf{u}_{2}=0
$$

This means that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly _dependent set.
(b) Suppose (for $\left.v_{1}\right) v_{2}$ gron above)

$$
c \mathbf{v}_{1}+d \mathbf{v}_{2}=\mathbf{0}
$$

Then $\mathbf{v}_{1}=\frac{-d}{c} \mathbf{v}_{2}$ if $c \neq 0$. But this is impossible since \mathbf{v}_{1} is
$\underline{\text { not }}$ a multiple of \mathbf{v}_{2} which means $c=\underline{0}$.
Similarly, $\mathbf{v}_{2}=\frac{-C}{d} \mathbf{v}_{1}$ if $d \neq 0$.

But this is impossible since \mathbf{v}_{2} is not a multiple of \mathbf{v}_{1} and so $d=0$.

This means that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly indepondent set.

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

linearly dependent

linearly independent

3. A Set Containing the 0 Vector

Theorem 9

A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_{1}=0$. Then

$$
\simeq \mathbf{v}_{1}+\bigcirc \mathbf{v}_{2}+\cdots+\bigcirc \mathbf{v}_{p}=\mathbf{0}
$$

which shows that S is linearly dependert

4. A Set Containing Too Many Vectors

Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.

Outline of Proof:

$$
A=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{p}
\end{array}\right] \text { is } n \times p
$$

Suppose $p>n$.

$$
\Rightarrow A \mathbf{x}=\mathbf{0} \text { has more variables than equations }
$$

$$
\Rightarrow A \mathbf{x}=\mathbf{0} \text { has nontrivial solutions }
$$

\Rightarrow columns of A are linearly dependent

EXAMPLE With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.
a. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 4\end{array}\right]\right\}$ indep, be neitur vector is a scalar multiple of the other.
b. Columns of $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8\end{array}\right]$

Dependent, b / c more vectors than the are entries in each vector
c. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
dependent, be contains the zero vector.
d. $\left\{\left[\begin{array}{l}8 \\ 2 \\ 1 \\ 4\end{array}\right]\right\} \begin{aligned} & \text { Independent, } \\ & b / c o n l y \\ & \text { are vector and is nonzero. }\end{aligned}$

Characterization of Linearly Dependent Sets

EXAMPLE Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ in \mathbf{R}^{3} in the following diagram. Is the set linearly dependent? Explain

Theorem 7

An indexed set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_{1} \neq \mathbf{0}$, then some vector $\mathbf{v}_{j}(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

