1.3 VECTOR EQUATIONS

Key concepts to master: linear combinations of vectors and a spanning set.

Vector: A matrix with only one column.
Vectors in \mathbf{R}^{n} (vectors with n entries):

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Geometric Description of $\mathbf{R}^{\mathbf{2}}$
Vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is the point $\left(x_{1}, x_{2}\right)$ in the plane.
\mathbf{R}^{2} is the set of all points in the plane.

Parallelogram rule for addition of two vectors:
If \mathbf{u} and \mathbf{v} in \mathbf{R}^{2} are represented as points in the plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{0}, \mathbf{u}$ and \mathbf{v}. (Note that $\mathbf{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.)

EXAMPLE: Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Graphs of \mathbf{u}, \mathbf{v} and $\mathbf{u}+\mathbf{v}$ are given below:

Illustration of the Parallelogram Rule

EXAMPLE: Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Express $\mathbf{u}, 2 \mathbf{u}$, and $\frac{-3}{2} \mathbf{u}$ on a graph.

Linear Combinations

DEFINITION

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbf{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ using weights $c_{1}, c_{2}, \ldots, c_{p}$.

Examples of linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
3 \mathbf{v}_{1}+2 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{1}, \quad \mathbf{v}_{1}-2 \mathbf{v}_{2}, \quad \mathbf{0}
$$

EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$. Express each of the following as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
\mathbf{a}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-4 \\
1
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
6 \\
6
\end{array}\right], \mathbf{d}=\left[\begin{array}{r}
7 \\
-4
\end{array}\right]
$$

EXAMPLE: Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}4 \\ 2 \\ 14\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}3 \\ 6 \\ 10\end{array}\right]$,
and $\mathbf{b}=\left[\begin{array}{r}-1 \\ 8 \\ -5\end{array}\right]$.

Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.

Solution: Vector \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} if can we find weights x_{1}, x_{2}, x_{3} such that

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}
$$

Vector Equation (fill-in):

Corresponding System:

$$
\begin{aligned}
x_{1}+4 x_{2}+3 x_{3} & =-1 \\
2 x_{2}+6 x_{3} & =8 \\
3 x_{1}+14 x_{2}+10 x_{3} & =-5
\end{aligned}
$$

Corresponding Augmented Matrix:

$$
\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=\underline{1} \\
& x_{2}=\underline{-2} \\
& x_{3}=\underline{2}
\end{aligned}
$$

Review of the last example: $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and \mathbf{b} are columns of the augmented matrix

$$
\left[\begin{array}{rrrr}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5
\end{array}\right]
$$

Solution to

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}
$$

is found by solving the linear system whose augmented matrix is

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}
\end{array}\right] .
$$

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

The Span of a Set of Vectors

EXAMPLE: Let $\mathbf{v}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$. Label the origin $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ together with $\mathbf{v}, 2 \mathbf{v}$ and $1.5 \mathbf{v}$ on the graph below.
\mathbf{x}_{3}

- 1.5 V
\mathbf{x}_{2}
x_{1}
$\mathbf{v}, 2 \mathbf{v}$ and $1.5 \mathbf{v}$ all lie on the same line. Span $\{\mathbf{v}\}$ is the set of all vectors of the form $c \mathbf{v}$. Here, Span $\{\mathbf{v}\}=$ a line through the origin.

EXAMPLE: \quad Label $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $3 \mathbf{u}+4 \mathbf{v}$ on the graph below.

$\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $3 \mathbf{u}+4 \mathbf{v}$ all lie in the same plane. Span $\{\mathbf{u}, \mathbf{v}\}$ is the set of all vectors of the form $x_{1} \mathbf{u}+x_{2} \mathbf{v}$. Here, Span $\{\mathbf{u}, \mathbf{v}\}=$ a plane through the origin.

Definition

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are in \mathbf{R}^{n}; then
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}=$ set of all linear combinations of

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} .
$$

Stated another way: Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written as

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}
$$

where $x_{1}, x_{2}, \ldots, x_{p}$ are scalars.
EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(a) Find a vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

$$
V_{1}+V_{2}=\left[\begin{array}{l}
6 \\
3
\end{array}\right]
$$

(b) Describe Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ geometrically.

$$
\begin{aligned}
& V_{2}=2 V_{1} \\
& \text { so } \operatorname{span}\left\{V_{1}, V_{2}\right\} \text { is a line though the origin. }
\end{aligned}
$$

Spanning Sets in \mathbf{R}^{3}

\mathbf{v}_{2} is a multiple of \mathbf{v}_{1}
Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}=\operatorname{Span}\left\{\mathbf{v}_{2}\right\}$
(line through the origin)

\mathbf{v}_{2} is not a multiple of \mathbf{v}_{1}
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=$ plane through the origin

EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}4 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}6 \\ 3 \\ 3\end{array}\right]$. Is
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a line or a plane?
Line

EXAMPLE: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 0 & 5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}8 \\ 3 \\ 17\end{array}\right]$. Is \mathbf{b} in the plane spanned by the columns of A ?

Solution:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 1 \\
0 & 5
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
8 \\
3 \\
17
\end{array}\right]
$$

Do x_{1} and x_{2} exist so that

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8 \\
3 \\
17
\end{array}\right]
$$

Corresponding augmented matrix:

$$
\left[\begin{array}{ccc}
1 & 2 & 8 \\
3 & 1 & 3 \\
0 & 5 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 5 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 0 & -4
\end{array}\right]
$$

So \mathbf{b} is not in the plane spanned by the columns of A

