1.3 VECTOR EQUATIONS

Key concepts to master: linear combinations of vectors and a spanning set.

Vector: A matrix with only one column.

Vectors in R^{*n*} (vectors with *n* entries):

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

Geometric Description of R²

Vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the point (x_1, x_2) in the plane.

 \mathbf{R}^2 is the set of all points in the plane.

Parallelogram rule for addition of two vectors:

If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are **0**, **u** and **v**. (Note that $\mathbf{0} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$.)

EXAMPLE: Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Graphs of \mathbf{u}, \mathbf{v} and $\mathbf{u} + \mathbf{v}$ are given below:

Illustration of the Parallelogram Rule

Linear Combinations

DEFINITION

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbf{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ using weights c_1, c_2, \dots, c_p .

Examples of linear combinations of v_1 and v_2 :

$$3\mathbf{v}_1 + 2\mathbf{v}_2, \qquad \frac{1}{3}\mathbf{v}_1, \qquad \mathbf{v}_1 - 2\mathbf{v}_2, \qquad \mathbf{0}$$

EXAMPLE: Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$.

Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution: Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find weights x_1, x_2, x_3 such that

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \mathbf{b}.$$

Vector Equation (fill-in):

$$\chi_{1}\begin{bmatrix}1\\0\\3\end{bmatrix}+\chi_{2}\begin{bmatrix}4\\2\\14\end{bmatrix}+\chi_{3}\begin{bmatrix}3\\-1\\8\\-5\end{bmatrix}=\begin{bmatrix}-1\\8\\-5\end{bmatrix}$$

Corresponding System:

Corresponding Augmented Matrix:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{array}{c} x_1 = \underline{1} \\ \Rightarrow x_2 = \underline{-2} \\ x_3 = \underline{2} \end{array}$$

Review of the last example: a_1 , a_2 , a_3 and b are columns of the augmented matrix

0 3	2 14	6 10	8 -5	
1	1	1	Ţ	
\mathbf{a}_1	\mathbf{a}_2	a 3	b	

Solution to

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\left[\begin{array}{cccc} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{array}\right].$$

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

The Span of a Set of Vectors

v, 2**v** and 1.5**v** all lie on the same line. **Span**{**v**} is the set of all vectors of the form c**v**. Here, **Span**{**v**} = a line through the origin. **EXAMPLE:** Label **u**, **v**, $\mathbf{u} + \mathbf{v}$ and $3\mathbf{u} + 4\mathbf{v}$ on the graph below.

u, **v**, **u** + **v** and $3\mathbf{u}$ +4**v** all lie in the same plane. **Span**{**u**, **v**} is the set of all vectors of the form $x_1\mathbf{u} + x_2\mathbf{v}$. Here, **Span**{**u**, **v**} = a plane through the origin.

Definition

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbf{R}^n ; then Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ = set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

Stated another way: Span $\{v_1, v_2, ..., v_p\}$ is the collection of all vectors that can be written as

$$x_1\mathbf{V}_1 + x_2\mathbf{V}_2 + \cdots + x_p\mathbf{V}_p$$

where x_1, x_2, \ldots, x_p are scalars.

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

(a) Find a vector in **Span** $\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$V_1 + V_2 = \begin{bmatrix} 6\\ 3 \end{bmatrix}$$

(b) Describe **Span** $\{v_1, v_2\}$ geometrically.

Spanning Sets in R³

 v_2 is **not** a multiple of v_1 **Span**{ v_1, v_2 } =plane through the origin

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix}$. Is **Span**{ $\mathbf{v}_1, \mathbf{v}_2$ } a line or a plane?

Line

EXAMPLE: Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is **b** in the plane spanned by the columns of *A*?

Solution:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$$

Do x_1 and x_2 exist so that

$$\chi_{1} \begin{bmatrix} 1\\ 3\\ -3 \end{bmatrix} + \chi_{2} \begin{bmatrix} 2\\ 1\\ 5 \end{bmatrix} = \begin{bmatrix} 8\\ -3\\ 17 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 1 & 2 & 8 \\ 3 & 1 & 3 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 0 & -4 \end{bmatrix}$$

So **b** is not in the plane spanned by the columns of *A*