Spanning and Linear Independence

Definition 1 Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ and \mathbf{b} be vectors in \mathbb{R}^{m}. Then a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ is any sum

$$
\mathbf{b}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{p} \mathbf{v}_{p} \text { where } c_{1}, c_{2}, \ldots, c_{p} \text { are real constants }
$$

The span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, written span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the set of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

1. To determine whether or not \mathbf{b} is in span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ you must find out if there are scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that $\mathbf{b}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$. This vector equation is equivalent to the matrix equation with augmented matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{p} \mathbf{b}\right]^{1}$
To check this, set up the augmented matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ and reduce it to row echelon form.

- If there is no row of the form $[000 \cdots 0$ non-zero number] then the system is consistent and there are solutions for the c^{\prime} s. Therefore, \mathbf{b} is in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$. If you are asked to find scalars that make this true, you must continue to reduced row echelon form to find them.
- If there is a row of the form $\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & \text { non-zero number }\end{array}\right]$ then the system is inconsistent and \mathbf{b} is not in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$.

2. To determine whether or not $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ spans \mathbb{R}^{m} you must find out if there are scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that $\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$ for any vector \mathbf{y} in \mathbb{R}^{m}.

To check this, set up the matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{p}\right]$ and reduce it to row echelon form. If there is a pivot position in every row, i.e. the row echelon form of A has no zero rows (so $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b}), then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ does span \mathbb{R}^{m}. If not, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ does not span \mathbb{R}^{m}

An indexed set of vectors is a set of vectors, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{m} for which order matters. As indexed sets $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ are different, although they are the same as sets that are not indexed.

Definition $\mathbf{2}$, An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{m} is said to be linearly independent $i f$ the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution, $x_{1}=x_{2}=\cdots=x_{p}=0$.
Equivalently, if A is an $m \times n$ matrix, then the columns of the matrix A are linearly independent if the matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$ where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
On the other hand, if there are specific scalars $c_{1}, c_{2}, \ldots c_{p}$ not all zero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent.
If $c_{1}, c_{2}, \ldots c_{p}$ are scalars that are not all equal to zero and $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$ holds, then $c_{1} \mathbf{v}_{1}+$ $c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$ is called a dependence relation.

Please Turn Over

[^0]To determine whether or not $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent, you determine whether $x_{1} \mathbf{v}_{1}+$ $x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}$ has only the trivial solution or nontrivial solutions. Equivalently, you can ask the same question for $A \mathbf{x}=\mathbf{0}$ has where $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right]$.

- If the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent.
- If there are nontrivial solutions to $A \mathbf{x}=\mathbf{0}$ then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent.

Recall that, to solve $A \mathbf{x}=\mathbf{0}$, one often row reduces A (instead of $[A \mathbf{0}]$) and converts to a homogenous system. We will use this convention in this description.

To check independence, set up the matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{p}\right]$ and reduce it to row echelon form.

- If every column is a pivot column, then the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}$ has no free variables, so the only solution to is the trivial one is $x_{1}=x_{2}=\cdots=x_{p}=0$ (the only solution to the matrix equation $A \mathrm{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.)
- If the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}$ (or matrix equation $A \mathbf{x}=\mathbf{0}$) has non-trivial solutions, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent.
To find dependence relations, you must transform the matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{p}\right]$ to reduced row echelon form. In this case there will be an infinite number of solutions because the equations $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}$ will have free variables. By choosing specific values for the x^{\prime} s, you can find specific solutions. Each nontrivial solution represents a dependence relation among the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$.

[^0]: ${ }^{1}$ Often an augmented matrix is written ($[A \mid \mathbf{b}]$, but our book does not use a \mid.
 (These are slightly edited versions of notes from Mary Glaser.)

