Spanning and Linear Independence

Definition 1 Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ and \mathbf{b} be vectors in \mathbb{R}^m . Then a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is any sum

 $\mathbf{b} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + \dots + c_p \mathbf{v}_p$ where c_1, c_2, \dots, c_p are real constants

The span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$, written span $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\}$, is the set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$.

1. To determine whether or not **b** is in span { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ } you must find out if there are scalars c_1, c_2, \dots, c_p so that $\mathbf{b} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p$. This vector equation is equivalent to the matrix equation with augmented matrix [$\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \cdots \mathbf{v}_p \mathbf{b}$]¹

To check this, set up the augmented matrix $[\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3 \, \cdots \, \mathbf{v}_p \, \mathbf{b}]$ and reduce it to row echelon form.

- If there is no row of the form $[0 \ 0 \ 0 \ \cdots 0 \$ non-zero number] then the system is consistent and there are solutions for the *c*'s. Therefore, b *is in* span{ v_1, v_2, \ldots, v_p }. If you are asked to find scalars that make this true, you must continue to reduced row echelon form to find them.
- If there is a row of the form $[0 \ 0 \ 0 \ \cdots \ 0$ non-zero number] then the system is inconsistent and b is *not* in span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$.
- 2. To determine whether or not $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ spans \mathbb{R}^m you must find out if there are scalars c_1, c_2, \dots, c_p so that $\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$ for **any** vector \mathbf{y} in \mathbb{R}^m .

To check this, set up the matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \cdots \ \mathbf{v}_p]$ and reduce it to row echelon form. If there is a pivot position in every row, i.e. the row echelon form of A has no zero rows (so $A\mathbf{x} = \mathbf{b}$ is consistent for all \mathbf{b}), then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ does span \mathbb{R}^m . If not, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ does not span \mathbb{R}^m

An *indexed set of vectors* is a set of vectors, $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^m for which order matters. As indexed sets $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$ are different, although they are the same as sets that are *not indexed*.

Definition 2, An indexed set of vectors $\{v_1, v_2, ..., v_p\}$ in \mathbb{R}^m is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution, $x_1 = x_2 = \cdots = x_p = 0$.

Equivalently, if A is an $m \times n$ matrix, then the columns of the matrix A are linearly independent if the matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$ where $\mathbf{0}$ is the zero vector in \mathbb{R}^m . On the other hand, if there are specific scalars $c_1, c_2, \ldots c_p$ not all zero such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent**. If c_1, c_2, \dots, c_p are scalars that are not all equal to zero and $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ holds, then $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ is called a **dependence relation**.

Please Turn Over

¹Often an augmented matrix is written ($[A | \mathbf{b}]$, but our book does not use a |.

⁽These are slightly edited versions of notes from Mary Glaser.)

To determine whether or not { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ } is linearly independent, you determine whether $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$ has only the trivial solution or nontrivial solutions. Equivalently, you can ask the same question for $A\mathbf{x} = \mathbf{0}$ has where $A = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p]$.

- If the only solution to $A\mathbf{x} = \mathbf{0}$ is the trivial solution, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly independent.
- If there are nontrivial solutions to $A\mathbf{x} = \mathbf{0}$ then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly dependent.

Recall that, to solve $A\mathbf{x} = \mathbf{0}$, one often row reduces A (instead of $[A \ \mathbf{0}]$) and converts to a homogenous system. We will use this convention in this description.

To check independence, set up the matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \cdots \ \mathbf{v}_p]$ and reduce it to row echelon form.

- If every column is a pivot column, then the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$ has no free variables, so the only solution to is the trivial one is $x_1 = x_2 = \cdots = x_p = 0$ (the only solution to the matrix equation $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.)
- If the vector equation x₁v₁ + x₂v₂ + ··· + x_pv_p = 0 (or matrix equation Ax = 0) has non-trivial solutions, then the set {v₁, v₂, ..., v_p} is linearly dependent. To find dependence relations, you must transform the matrix [v₁ v₂ v₃ ··· v_p] to reduced row echelon form. In this case there will be an infinite number of solutions because the equations x₁v₁ + x₂v₂ + ··· + x_pv_p = 0 will have free variables. By choosing specific values for the x's, you can find specific solutions. Each nontrivial solution represents a dependence relation among the vectors {v₁, v₂, ..., v_p}.