
MATH 61-02: WORKSHEET 11 (§7.1)

(W1) (a) For a vertex v in a graph G = (V,E), let deg(v) be the degree of v, which is the number of times
v appears as the endpoint of an edge. (So loops count double.) What is the smallest possible
graph with at least one loop where every vertex has odd degree?

(b) Let Kn be the complete graph on n vertices (the simple graph where each vertex is connected
by one edge to each other vertex). Sketch K4, K5, and K6. For general n, what is |E(Kn)| and
what is the degree of each vertex?

(c) Prove that
∑
v∈V

deg(v) = 2|E| for any graph.

(d) Is it possible for a graph to have 11 vertices, all of which have degree 3?
(e) Is it possible for a graph to have 19 vertices, each of which have degree 1, 5, or 9?

(Hint: consider the degree sum mod 4.)
Answer. (a) A graph on one vertex v with any number of loops must have deg(v) even, so our graph must

have at least two vertices. It is easy to see that if we have two vertices v0, v1 with a loop at v0
and an edge from v0 to v1, this satisfies the given constraint.

(b) The graphs look like this:

In general, |E(Kn)| =
(
n
2

)
, since an edge is uniquely defined by two distinct vertices and so it

suffices to count all pairs of points in Kn. For each vertex v ∈ Kn, deg(v) = n − 1, since we
connect v to every point aside from itself.

(c) Suppose for a graph G we take the sum
∑
v∈V

deg(v). This adds up the degrees of all vertices,

which counts the edge-ends. Since every edge has two of those, this double-counts the edges, so
adds up to 2|E|.

(d) No: Suppose it did. Then we would have that
∑

deg(v) = 11 · 3 = 33 = 2|E|, but it doesn’t
make sense to have 16 1

2 edges.
(e) No: Suppose it did, and let a, b, and c be the number of vertices with degree 1, 5, 9, respectively.

Then we would have that
∑

deg(v) = 1a + 5b + 9c, for some a, b, c satisfying a + b + c = 19.
But let’s consider everything mod 4. Since 5 ≡ 1 (mod 4) and 9 ≡ 1 (mod 4), we can reduce
and obtain a+ 5b+ 9c ≡ a+ b+ c. Now we see that the degree sum has the same remainder as
19 ≡ 1 (mod 4), and that’s impossible because it has to be even.

Actually, it’s nice to practice your modular arithmetic and all, but there’s a much simpler way
to think about this: if all the degrees are odd, and you add up 19 odd numbers, you’ll get an
odd total. But we know that the total should be even!
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(f) Suppose G is a simple graph (no loops) with |V (G)| = n. Show that if the degree of every ver-
tex in G is at least n−1

2 , then G is connected. (First convince yourself this is true for n = 2, 3, 4.)

There are many different ways to do this problem. Here are four of them:
Proof 1. Suppose G were not connected. Then it must have at least two connected components. In each

of these connected components, there must be a vertex v with degree at least n−1
2 , so each of

these connected components must have at least 1 + n−1
2 vertices (counting v as well). But since

we have at least two of these connected components, that implies that G must have at least
2 + (n− 1) = n + 1 vertices. Contradiction!

Proof 2. Suppose G were not connected. Then it must have at least two connected components, so there
exists a partition of V (G) into two sets of 1 ≤ k ≤ n − 1 and n − k vertices with no edges

between the two sets. But since G is simple, the first set of vertices can have at most
(
k
2

)
edges

among them, and the second set of vertices can have at most
(
n−k
2

)
edges among them. It is

easy to see that this sum
(
k
2

)
+
(
n−k
2

)
is maximized when k = bn2 c. Then, the resulting sum will

be at most (n
2 )(n

2 − 1) = n2

4 −
n
2 , but the degree condition we have on our vertices combined

with part (c) of the last question gives us that we have at least n2

4 −
n
4 edges, a contradiction.

Proof 3. Take two vertices x and y in G. Now, either x and y are adjacent, or they are not. If they
are not, since the degree of every vertex in G is at least n−1

2 , the combined degrees of x and y
must be at least n− 1, and by the Pigeonhole Principle, there must exist a vertex v such that
x and y are both adjacent to v. Hence any two vertices are either adjacent or have a common
neighbor, and so the graph is clearly connected.

Proof 4. I make the same claim I showed in Proof 3, but go by contradiction: Every pair of distinct
vertices are either adjacent or have a common neighbor. Suppose not. Then there exist two
vertices u, v that aren’t adjacent and don’t have a common neighbor. So that means that all
the neighbors of u and v must be distinct, so as the degrees of u, v are at least n−1

2 each, they
have n − 1 distinct neighbors, and adding u and v gives us that the graph has n + 1 vertices.
Contradiction!


