

Name: Quiz name: Discrete Math Apr 6 (cardinality)		me: Discrete Math Apr 6 (cardinality)
1.	 A C D 	/hat is the cardinality of P, the set of all primes? It is a large finite number. The number is greater than 10 ⁶¹ . P = Z , which is countably infinite. This is because the primes can be listed. P is 0, because the proportion of primes in the first n numbers approaches 0 as n goes to infinity, just like perfect squares. P = R , which is uncountable, because there is no formula for the nth prime.
2.		uppose R is the relation {(x,x),(x,y),(y,y),(y,x),(z,z)} on the set S={x,y,z}. What is the cardinality of the uotient space S/R? 5, the number of elements in R 3, the number of elements in S that are present in the relation 1, because x, y, and z are all identified by R 2, the number of blocks in S after elements are glued together by identifying a and b iff aRb
	_	

Recall that floor(x) denotes the largest integer that is less than or equal to x. Define an equivalence relation on C, the set of circles in the plane, by $C_1 \sim C_2$ iff floor(radius₁)=floor(radius₂). What is the cardinality of the set of classes of circles?

Finite.

3.

Countably infinite.

Uncountable.

Undefined.