Quiz 9 Solutions

1. Throughout this question, A and C have bids

$$a = 9$$
 $c = 6$

and A is the winning bidder. B's bid will be different depending on certain parts of the question.

- (a) In the (x_B, x_C) -plane below on the left, describe all compensation arrangements fair to C.
- (b) In the (x_B, x_C) -plane below on the right, describe all compensation arrangements fair to A.

- (c) Draw the line representing C getting C's fair share and the line representing A getting A's fair share on the same (x_B, x_C) -plane below. Plot the point (3,3) in the plane.
 - i. On this same plane, draw a line representing B getting B's fair share if b=6. Label this line b=6.
 - ii. On this same plane, draw a line representing B getting B's fair share if b=9. Label this line b=9.
 - iii. On this same plane, draw a line representing B getting B's fair share if b=12. Label this line b=12.
 - iv. Graph the line $x_C = x_B$, ie- y = x, and label it.

(d) For which values of b is the point (3,3) in the fairness triangle? Circle:

$$b=6$$
 $b=9$ $b=12$

(e) Applying Proposition 13.14 part 3., for which values of b does the point (3,3) correspond to an envy-free compensation arrangement? Circle:

$$b=6$$
 $b=9$ $b=12$

(f) Are there any values of b for which NO envy-free compensation arrangement is possible? If yes, circle them:

$$b = 6$$
 $b = 9$ $b=12$

(g) True or False:

In this example, an envy-free arrangement is possible if and only if $b \leq 9$.

T F

(h) **Prove for <u>any</u> bid values**: The winning bidder, A, is a highest bidder if and only if $x_B = x_C = \frac{a}{3}$ is a fair compensation arrangement.

Proof. First, if A is a highest bidder then $a \ge b$ and $a \ge c$. Then clearly this compensation arrangement is fair to B and C because

$$x_B = \frac{a}{3} \geqslant \frac{b}{3} \qquad x_C = \frac{a}{3} \geqslant \frac{c}{3}$$

This compensation arrangement is also fair to A because A get's exactly A's fair share:

$$x_A = a - x_B - x_C = a - \frac{a}{3} - \frac{a}{3} = \frac{3a - 2a}{3} = \frac{a}{3}$$

To complete the proof, we also need to argue this opposite direction: that $x_B = x_C = \frac{a}{3}$ being fair implies a is a highest bidder. This is clear because everything we said above is an equivalence, so we're done.

2. Throughout this question, B and C have bids

$$b = 12$$
 $c = 6$

and A is the winning bidder. A's bid will be different depending on certain parts of the question.

- (a) In the (x_B, x_C) -plane below on the left, describe all compensation arrangements fair to B.
- (b) In the (x_B, x_C) -plane below on the right, describe all compensation arrangements fair to BOTH B and C.

- (c) Draw the line representing B getting B's fair share and the line representing C getting C's fair share on the same (x_B, x_C) -plane on the next page.
 - i. Plot the point which represents both B and C getting exactly their fair shares. What is this point?

$$P = (4, 2)$$

- ii. On this same plane, draw a line representing A getting A's fair share if a = 12. Label this line a = 12.
- iii. On this same plane, draw a line representing A getting A's fair share if a = 9. Label this line a = 9.
- iv. On this same plane, draw a line representing A getting A's fair share if a=6. Label this line a=6.
- (d) For which values of a was a fair arrangement possible? Circle:

$$a = 6$$
 $a=9$ $a=12$

(e) What is the average bid when

$$a = 6?$$
 $m = \frac{6+6+12}{3} = 8$

$$a = 9?$$
 $m = \frac{6+9+12}{3} = 9$

$$a = 12$$
? $m = \frac{6+12+12}{3} = 10$

(f) Prove: for any real numbers a, b, and c,

$$a = \frac{a+b+c}{3} \iff a = \frac{b+c}{2}$$

Proof.

$$a = \frac{a+b+c}{3} \iff a - \frac{a}{3} = \frac{b+c}{3}$$
$$\iff \frac{2a}{3} = \frac{b+c}{3}$$
$$\iff a = \frac{b+c}{2}$$

(g) Prove: for any real numbers a, b, and c,

If A, the winning bidder, is an average bidder, then (b/3, c/3) is a point on the line representing A getting A's fair share. Conclude that the fairness triangle is only equal to one point.

Proof. We want to show (b/3, c/3) is a point on the line $\frac{2a}{3} = x_B + x_C$, which represents A getting A's fair share. In other words, we need to show $x_B = b/3$, $x_C = c/3$ is a solution to the equation $\frac{2a}{3} = x_B + x_C$.

By our proof above, we saw that A is an average bidder if and only if $a = \frac{b+c}{2}$. Plugging this in to the left hand side of the equation above, we simplify and get the result:

$$\frac{2}{3} \times a = \frac{2}{3} \times \frac{(b+c)}{2} = \frac{b+c}{3} = \frac{b}{3} + \frac{c}{3}$$

The point (b/3, c/3) is the intersection of the lines representing fairness to B and fairness to C. If the line representing fairness to A hits (b/3, c/3) also, then the point must be the only compensation arrangement fair to all three.