Quiz 9 Solutions

1. Throughout this question, A and C have bids

$$
a=9 \quad c=6
$$

and A is the winning bidder. B 's bid will be different depending on certain parts of the question.
(a) In the $\left(x_{B}, x_{C}\right)$-plane below on the left, describe all compensation arrangements fair to C.
(b) In the $\left(x_{B}, x_{C}\right)$-plane below on the right, describe all compensation arrangements fair to A.

(c) Draw the line representing C getting C 's fair share and the line representing A getting A 's fair share on the same $\left(x_{B}, x_{C}\right)$-plane below. Plot the point $(3,3)$ in the plane.
i. On this same plane, draw a line representing B getting B 's fair share if $b=6$. Label this line $b=6$.
ii. On this same plane, draw a line representing B getting B 's fair share if $b=9$. Label this line $b=9$.
iii. On this same plane, draw a line representing B getting B 's fair share if $b=12$. Label this line $b=12$.
iv. Graph the line $x_{C}=x_{B}$, ie- $y=x$, and label it.

(d) For which values of b is the point $(3,3)$ in the fairness triangle? Circle:

$$
\mathrm{b}=6 \quad \mathrm{~b}=9 \quad b=12
$$

(e) Applying Proposition 13.14 part 3., for which values of b does the point $(3,3)$ correspond to an envy-free compensation arrangement? Circle:

$$
\mathrm{b}=6 \quad \mathrm{~b}=9 \quad b=12
$$

(f) Are there any values of b for which NO envy-free compensation arrangement is possible? If yes, circle them:

$$
b=6 \quad b=9 \quad b=12
$$

(g) True or False:

In this example, an envy-free arrangement is possible if and only if $b \leqslant 9 . \quad \mathrm{T}$
(h) Prove for any bid values: The winning bidder, A, is a highest bidder if and only if $x_{B}=x_{C}=\frac{a}{3}$ is a fair compensation arrangement.

Proof. First, if A is a highest bidder then $a \geqslant b$ and $a \geqslant c$. Then clearly this compensation arrangement is fair to B and C because

$$
x_{B}=\frac{a}{3} \geqslant \frac{b}{3} \quad x_{C}=\frac{a}{3} \geqslant \frac{c}{3}
$$

This compensation arrangement is also fair to A because A get's exactly A 's fair share:

$$
x_{A}=a-x_{B}-x_{C}=a-\frac{a}{3}-\frac{a}{3}=\frac{3 a-2 a}{3}=\frac{a}{3}
$$

To complete the proof, we also need to argue this opposite direction: that $x_{B}=x_{C}=\frac{a}{3}$ being fair implies a is a highest bidder. This is clear because everything we said above is an equivalence, so we're done.
2. Throughout this question, B and C have bids

$$
b=12 \quad c=6
$$

and A is the winning bidder. A 's bid will be different depending on certain parts of the question.
(a) In the $\left(x_{B}, x_{C}\right)$-plane below on the left, describe all compensation arrangements fair to B.
(b) In the $\left(x_{B}, x_{C}\right)$-plane below on the right, describe all compensation arrangements fair to BOTH B and C.

(c) Draw the line representing B getting B 's fair share and the line representing C getting C^{\prime} 's fair share on the same $\left(x_{B}, x_{C}\right)$-plane on the next page.
i. Plot the point which represents both B and C getting exactly their fair shares. What is this point?

$$
P=(4,2)
$$

ii. On this same plane, draw a line representing A getting A 's fair share if $a=12$. Label this line $a=12$.
iii. On this same plane, draw a line representing A getting A 's fair share if $a=9$. Label this line $a=9$.
iv. On this same plane, draw a line representing A getting A 's fair share if $a=6$. Label this line $a=6$.
(d) For which values of a was a fair arrangement possible? Circle:

$$
\begin{array}{lll}
a=6 & \mathrm{a}=9 & \mathrm{a}=12 \\
\hline
\end{array}
$$

(e) What is the average bid when

$$
\begin{aligned}
& a=6 ? m=\frac{6+6+12}{3}=8 \\
& a=9 ? m=\frac{6+9+12}{3}=9 \\
& a=12 ? m=\frac{6+12+12}{3}=10
\end{aligned}
$$

(f) Prove: for any real numbers a, b, and c,

$$
a=\frac{a+b+c}{3} \Longleftrightarrow a=\frac{b+c}{2}
$$

Proof.

$$
\begin{aligned}
a=\frac{a+b+c}{3} & \Longleftrightarrow a-\frac{a}{3}=\frac{b+c}{3} \\
& \Longleftrightarrow \frac{2 a}{3}=\frac{b+c}{3} \\
& \Longleftrightarrow a=\frac{b+c}{2}
\end{aligned}
$$

(g) Prove: for any real numbers a, b, and c,

If A, the winning bidder, is an average bidder, then $(b / 3, c / 3)$ is a point on the line representing A getting A 's fair share. Conclude that the fairness triangle is only equal to one point.

Proof. We want to show $(b / 3, c / 3)$ is a point on the line $\frac{2 a}{3}=x_{B}+x_{C}$, which represents A getting A 's fair share. In other words, we need to show $x_{B}=b / 3, x_{C}=c / 3$ is a solution to the equation $\frac{2 a}{3}=x_{B}+x_{C}$.
By our proof above, we saw that A is an average bidder if and only if $a=\frac{b+c}{2}$. Plugging this in to the left hand side of the equation above, we simplify and get the result:

$$
\frac{2}{3} \times a=\frac{2}{3} \times \frac{(b+c)}{2}=\frac{b+c}{3}=\frac{b}{3}+\frac{c}{3}
$$

The point $(b / 3, c / 3)$ is the intersection of the lines representing fairness to B and fairness to C. If the line representing fairness to A hits $(b / 3, c / 3)$ also, then the point must be the only compensation arrangement fair to all three.

