2

Quiz 6 Solutions

1. Consider the following example for questions (a)–(e).

					D 2
2	3	2	1	2	
A	D	A	B	C	
C	B	C	A	В	$4 \mid 6 \times 4$
B	A	B	D	A	
\overline{D}	C	\overline{D}	C	\overline{D}	
					A 2

- (a) (1 pt) What is the Smith set? $S = \{A, B, C\}$
- (b) (1 pt each) Fill in the winner set for:
 - Runoff: $W_R = \{A\}$
 - Plurality: $W_P = \{A\}$
 - Pairwise comparison: $W_{PC} = \{A, B, C\}$
 - a priori Smith fair Runoff: $W_R^S = \{ B \}$
 - a priori Smith fair plurality: $W_P^S = \{A, B\}$
 - a priori Smith fair pairwise comparison: $W_{PC}^S = \{A, B, C\}$
- (c) Which winner selection methods can we conclude are NOT a priori Smith fair from this example? Circle all that apply (1 pt):

plurality

runoff	
--------	--

pairwise comparison

- (d) List all beatpaths between A and C, with strengths. You may use shorthand notation from class. Does one of A or C lose by the beatpath method? (1 pt)
 - $A \to C$ has strength 6, only beatpath A to C.
 - $C \to B \to A$ has strength 2, only beatpath C to A.

Since the strongest beatpath A to C is stronger than the strongest beatpath C to C, we conclude that \boxed{C} is a loser by the beatpath method.

- (e) List all beatpaths between A and B, with strengths. You may use shorthand notation from class. Does one of A or B lose by the beatpath method? (1 pt)
 - $B \to A$ has strength 2, only beatpath B to A.
 - $A \xrightarrow{6} C \xrightarrow{2} B$ has strength 2, only beatpath A to B.

Since no beat path is stronger than another, neither $A \mbox{ nor } B$ are marked as losers by the beat path method.