Quiz 18 Solutions!

1. After a glorious upset over the Trinity roosters (bantams? meh), the two ice hockey captains A and B celebrate by using the Adjusted Winner Method to divide a Neapolitan ice cream. Their values:

	Choc	Van	Straw
A	.3	.6	.1
B	.4	.2	.4
A-to-B val rat	$3 / 4$	3	$1 / 4$

(a) Compute the A-to- B valuation ratios and fill them out in the table above.
(b) On the hunt for a pareto-optimal and equitable division, we are going to make a threshold cut which splits the Chocolate between A and B.
i. What is the ratio associated to this threshold division? \quad Ratio $=3 / 4$
ii. Who will get the Vanilla in this threshold cut? Who will get the Strawberry?

Van: to $A \quad$ Straw: to B
iii. Give A and B the Vanilla and Strawberry as above in Part 1(b)ii. Let $x=$ the amount of the Chocolate component we will put in A 's slice.
Make equations in x that represent A 's and B 's values for their slices.

$$
x=\text { Choc in } A \text { 's slice }
$$

A 's value of A 's slice

$$
.6+.3 x \quad .4+.4(1-x)=.8-.4 x
$$

B 's value of B 's slice
iv. Use these equations to find an equitable, pareto-optimal division.

$$
\begin{align*}
.6+.3 x & =.8-.4 x \tag{2pts}\\
.6+.7 x & =.8 \\
.7 x & =.2 \\
x & =2 / 7
\end{align*}
$$

Then the pareto-optimal, equitable division is:
Give to A : All the Van, 2/7 of the Choc

