Т

 \mathbf{F}

Quiz 15

1. Hangry thru-hikers Anuj, Becca, and Crash (he's from Cali it's not his fault) are sharing two high quality granolas - Kashi and Galaxy. Their values for the types of granola are on the left below. Anuj makes the cut on the right, which is a good cut for A to play Steinhaus' lone divider method.

	Kash	Gal			S.	Sa	Sa
A	1/2	1/2	Kash	$\frac{D_{\rm I}}{1/3}$	$\frac{D_2}{1/6}$	$\frac{-53}{1/2}$	
B	1/3	2/3	3	Gal	/ /	1/0 $1/2$	
C	1	0		Gai	1/0	1/2	1/0

With this cut above on the right, A, B, and C will play Steinhaus' lone divider method.

(a) Fill out the envy-table below for this example and the Bid lists. How does each player feel about each slice? Which pieces will each player include in their Bid list? (5 pts)

	S_1	S_2	S_3	Bid list
A	1/3	1/3	1/3	S_1, S_2, S_3
B	1/3	7/18	5/18	S_1, S_2
C	1/3	1/6	1/2	S_1, S_3

(b) Is there an envy-free division which can result from Steinhaus' method in this example? <u>Circle One</u>: Yes No (1 pt)

 $\frac{\text{If yes, describe who gets which slice. If no, explain why.}}{\text{Give } S_1 \text{ to } A, S_2 \text{ to } B, \text{ and } S_3 \text{ to } C.}$ (1 pt)

- (c) Describe a fair division which is NOT envy-free that results from Steinhaus' method in this example. (1 pt) There are a lot of different divisions which could result from Steinhaus' method in this example. The one given above is the only one which is envy-free. The following alternatives are fair but not envy-free. Remember by definition of Steinhaus' method, every result must be fair.
 - S_1 to B, S_3 to C, S_2 to A B envies A.
 - S_1 to C, S_2 to B, S_3 to A C envies A.
- 2. Circle T if the claim is true, F if the claim is false. (1 pt each)
 - (a) Every player considers at least one of the slices fair in Steinhaus' lone T F divider Method.
 - (b) Steinhaus' lone divider method is pareto-optimal.
 - (a) Exercise 17.4 (Solution)
 - (b) Example on this quiz, or your example from Exercise 17.6 (Solution)