Quiz 11 Solutions

1. The psych students A, B, and C submit bids | $a=6$ | $b=4$ | $c=5$ |
| :--- | :--- | :--- |\quad for their advisors outdated Weschler IQ test.

(a) Suppose A is the winning bidder. Find an equitable compensation arrangement.

$$
\begin{align*}
q=\frac{w}{S} & =\frac{6}{6+4+5}=\frac{6}{15}=\frac{2}{5} \tag{3pts}\\
x_{B} & =q b=\frac{2}{5} \times 4=\frac{8}{5} \\
x_{C} & =q c=\frac{2}{5} \times 5=2
\end{align*}
$$

(b) Now suppose C is the winning bidder. The payouts are

$$
x_{A}=2 \quad x_{B}=1
$$

What does
i. A think A gets? 2
ii. A think C gets? $6-2-1=3$
iii. C think C gets? $5-2-1=2$
iv. Circle which players have envy: $\quad \mathrm{A} \quad \mathrm{B} C$
2. Now A and B submits bids a, b which are some positive real numbers, NOT the number from Question 1. If A is the winning bidder, what is the equitable payout to B that A should make? Show work.
bids: a, b unknown real numbers. A wins. Find q, x_{B}

$$
x_{B}=\frac{a b}{a+b}
$$

See the solution to Question 14.5(a) in the book.
3. Extra credit (+1 pt) Prove that the payout you found in Question 2 is fair to B if and only if A is a highest bidder. Write on the back!

Proof. Fair to B means $x_{B}=\frac{a b}{a+b} \geqslant \frac{b}{2}$. Rearranging this equation gives us what we want:

$$
\begin{aligned}
\frac{a b}{a+b} & \geqslant \frac{b}{2} \\
& \Longleftrightarrow \frac{a b}{a+b} \geqslant \frac{b}{2} \\
& \Longleftrightarrow \frac{a}{a+b} \geqslant \frac{1}{2} \\
& \Longleftrightarrow 2 a \geqslant a+b \\
& \Longleftrightarrow 2 a-a \geqslant b \Longleftrightarrow a \geqslant b
\end{aligned}
$$

which means A is a highest bidder.

