Quiz 10

The kids A, B, and C submit bids $\quad a=18 \quad b=9 \quad c=15 \quad$ for Dad's vintage bike.

1. Suppose C is the winning bidder. In the $\left(x_{A}, x_{B}\right)$-plane: Shade the region representing all compensation arrangements fair to BOTH \underline{B} and C. Label your graph!!!

2. Suppose C is the winning bidder and the compensation amounts are $x_{A}=8 \quad x_{B}=4$.
(a) (2 pts) Compute the payout to the winner, C, given these compensation amounts:

$$
x_{C}=c-x_{A}-x_{B}=15-8-4=3
$$

(b) (1 pt) Is this compensation arrangement fair?

Circle One: Yes
(c) (1 pt) Define an equitable compensation arrangement for this example (with $N=3$ and bids as above).
For a compensation arrangement to be equitable, we need

$$
\frac{x_{A}}{18}=\frac{x_{B}}{9}=\frac{x_{C}}{15}
$$

(d) (3 pts) Is this the compensation arrangement from the beginning of Question 2 equitable? Explain. Show all work.
Circle One: Yes No
Explain.
Here are two ways to do this problem correctly:
i. Both A and B get the same proportion of their bids, because,

$$
\frac{x_{A}}{a}=\frac{8}{18}=\frac{4}{9}=\frac{x_{B}}{b}
$$

However, C does not get the same proportion of C 's bid:

$$
\frac{x_{C}}{c}=\frac{3}{15}=\frac{1}{5} \neq \frac{4}{9}
$$

So this compensation arrangement is NOT equitable.
ii. We can also find q, and show that at least one player is not getting the q proportion of their bid. By our formula in class, we know q to be

$$
q=\frac{w}{S}=\frac{15}{18+9+15}=\frac{15}{42}
$$

Since, for example, $\frac{x_{C}}{c}=\frac{1}{5} \neq q$, we can conclude this compensation arrangement is not equitable.

