Quiz 15

1. Hangry thru-hikers Anuj, Becca, and Crash (he's from Cali it's not his fault) are sharing two high quality granolas - Kashi and Galaxy. Their values for the types of granola are on the left below. Anuj makes the cut on the right, which is a good cut for A to play Steinhaus' lone divider method.

	Kash	Gal
A	$1 / 2$	$1 / 2$
B	$1 / 3$	$2 / 3$
C	1	0

	S_{1}	S_{2}	S_{3}
Kash	$1 / 3$	$1 / 6$	$1 / 2$
Gal	$1 / 3$	$1 / 2$	$1 / 6$

With this cut above on the right, A, B, and C will play Steinhaus' lone divider method.
(a) Fill out the envy-table below for this example and the Bid lists. How does each player feel about each slice? Which pieces will each player include in their Bid list?

	S_{1}	S_{2}	S_{3}	Bid list
A	$1 / 3$	$1 / 3$	$1 / 3$	
B				
C				

(b) Is there an envy-free division which can result from Steinhaus' method in this example?

Circle One: Yes No
If yes, describe who gets which slice. If no, explain why.
(c) Describe a fair division which is NOT envy-free that results from Steinhaus' method in this example.
2. Circle T if the claim is true, F if the claim is false. (1 pt each)
(a) Every player considers at least one of the slices fair in Steinhaus' lone divider Method.
(b) Steinhaus' lone divider method is pareto-optimal.

