Redistricting and the Isoperimetic Problem Math 19-03 Lecture 23

Sarah Bray

Department of Mathematics
Tufts University

23 April 2015

Announcements

- Exam: Monday May 4th, 7:00-10:00pm
- Office hours next week: Monday 7:30-9:00pm, Wednesday 10:30am-12:00pm
- Bonus rounds:
(1) Thursday April 30th, TBD, 10:30am-12:00pm (check course webpage for details)
(2) Sunday May 3rd, Robinson 152, 7:00-8:30pm

Today

(1) The Isoperimetric Problem
(2) Districting
(3) Isoperimetric Problems Today
(4) Review

The story of Dido (~ 825 BCE)

Dido's question: How much land can be bound by a bull's hide?

The Isoperimetric Problem: how to maximize area with a fixed perimeter?
Rephrased: how to minimize perimeter with a fixed area?
$1 / 3$
Example. Isoperimetric question for rectangles.

$$
\square
$$

$$
P=4, A=1 \quad P=5, A=1 \quad P=6 \frac{2}{3}, A=1
$$

Fact. The square solves the isoperimetric problem for rectangles: minimum perimeter per unit area.

Theorem. (Zenodorus, ~200 BCE) A regular polygon with n sides solves the isoperimetric problem for n-sided polygons.

Is there a shape which maximizes an area A for a given perimeter L ?

The Isoperimetric Theorem (Steiner, 1842).

Yes! It's the circle of circumference L

The Isoperimetric Inequality. $L^{2}-4 \pi A \geq 0$, with equality only for the circle.

Detail from a sketch made in commemoration of Carlos Quintos' campaign on the doubled-walled city of Tunis, clearly satisfying the isoperimetric property of the circle. (31 August 1535). Source: Ashbaugh \& Benguria

S. Bray

City of Boston Demographic Information: The red dots show white people, blue is black, orange is Hispanic, green is Asian, and yellow is other, according to maps of 2010 Census data by Eric Fischer.
Source: Business Insider

City of Boston Demographic Information: The red dots show white people, blue is black, orange is Hispanic, green is Asian, and yellow is other, according to maps of 2010 Census data by Eric Fischer.
Source: Business Insider

The original Gerry-Mander of the Jefferson Party in 1812. Source: SIAM news

The Isoperimetric Problem
Districting
Isoperimetric Problems Today
Review

S. Bray

The Isoperimetric Problem
Districting
Isoperimetric Problems Today
Review

S. Bray

S. Bray

25 neighborhoods, 5 districts equal size, 1 rep each district.

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- \# W = $12 \rightarrow 2.4$ reps
- $\# \mathrm{~B}=9 \rightarrow 1.8 \mathrm{reps}$
- \# H = $4 \rightarrow .8$ reps

B	W	H	W	H
H	W	W	W	H
W W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 4 reps
- B: 1 rep
- H: 0 reps

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 1 full, 2 half \rightarrow 2 reps
- B: 2 full, 1 half \rightarrow 2.5 reps
- H: 0 full, 1 half \rightarrow .5 reps

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 2 reps
- B: 2 reps
- H: 1 rep

Optimal isoperimetric for district lines: how can we minimize total perimeter of the five districts?

$$
P=12
$$

Optimal isoperimetric for district lines: how can we minimize total perimeter of the five districts?

$$
P=12
$$

Optimal isoperimetric for district lines: how can we minimize total perimeter of the five districts?

$P=12$
"spread"

$P=10$
"compact"

Optimal isoperimetric for district lines: how can we minimize total perimeter of the five districts?

\[

\]

$P=10$
"compact"

An isoperimetrically efficient districting scheme will have more compact type districts and fewer spread type districts.

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 4 reps
- B: 1 rep
- H: 0 reps
\# spread = 3
\# compact $=2$
Inefficient

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 1 full, 2 half \rightarrow 2 reps
- B: 2 full, 1 half \rightarrow 2.5 reps
- H: 0 full, 1 half \rightarrow .5 reps
\# spread $=4$
\# compact = 1
Inefficient

B	W	H	W	H
H	W	W	W	H
W	W	B	W	W
W	W	B	B	B
W	B	B	B	B

- W: 2 reps
- B: 2 reps
- H: 1 rep
\# spread = 1
\# compact $=4$
Efficient
Optimal
!!!

Isoperimetric Problems Today

- Computer scientists study the isoperimetric problem for districting in the United States: Washington Post
- My officemate digs it, for his research about math:
Exploring Isoperimetric Inequalities in Heisenburg space.

Review time!

Resources on course webpage

