Fair Division Handout

1. Two people are dividing a pie that is half apple and half peach using "I cut, you choose".

J likes apple three times as much as peach, and K likes apple twice as much as peach.

Consider the following cut:

(a) If J was the divider, would J make that cut?
(b) What fraction of the pie is each piece worth to K?
(c) What fair division results?
(d) Is the above division equitable?
(e) Is the above division envy-free?

(f) If J was the divider, list all of the above cuts that J could possibly make.
(g) If K was the divider, list all of the above cuts that J could possibly make.
2. Two people are using "I cut, you choose" to divide a pizza that has pepperoni, anchovies, mushroom and sausage.
D's preferences
C's preferences

(a) Show that these are three different cuts that D could make as the divider:

(b) Now for each different cut, find the value of the two pieces to C, and find the division that results.
3. Three people (B, C and D) are using the Steinhaus method to divide a pie that is half apple (left) and half peach (right). B likes both equally, C hates apple and loves peach, and D likes peach twice as much as apple.

If D divides the pie into three pieces as shown above, make a chart showing the fraction of the pie that each piece is worth to each player, find the bid lists, and then find a fair division that results.
4. Three people (B, C and D) are using the Steinhaus method to divide a pie that is half apple (left) and half peach (right). B hates apple and loves peach. C likes peach twice as much as apple, and D loves apple and hates peach.

If D divides the pie into three pieces as shown above, make a chart showing the fraction of the pie that each piece is worth to each player, find the bid lists, and then find a fair division that results.
5. Five players (A, B, C, D and E) are using the Steinhaus method to divide a lot of land. The lot is divided into five pieces by D , and the table below summarizes the values of each piece to each player:

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
A	$\frac{9}{50}$	$\frac{15}{50}$	$\frac{8}{50}$	$\frac{10}{50}$	$\frac{8}{50}$
B	$\frac{9}{50}$	$\frac{9}{50}$	$\frac{14}{50}$	$\frac{9}{50}$	$\frac{9}{50}$
C	$\frac{2}{50}$	$\frac{14}{50}$	$\frac{10}{50}$	$\frac{12}{50}$	$\frac{12}{50}$
D	$\frac{10}{50}$	$\frac{10}{50}$	$\frac{10}{50}$	$\frac{10}{50}$	$\frac{10}{50}$
E	$\frac{9}{50}$	$\frac{15}{50}$	$\frac{8}{50}$	$\frac{9}{50}$	$\frac{9}{50}$

(a) List the pieces each player would bid on if they bid honestly, and then describe a fair division.
(b) If player C dishonestly bids on S_{2}, find a division that could result which is fair to A, B and D, but not fair to C (be sure to show why it can be unfair to C , yet must be fair to the others).
6. Three people are using Selfridge.Conway to divide up a berry tart that has the following configuration:

L	M	M
H	H	M
H	H	M
H	H	M

Suppose A likes all three types of tart equally, B likes H and M equally, but likes L four times as much as those, and C likes L and H equally, but likes M twice as much. Also, suppose A divides the tart into three pieces by the columns, so we can call the pieces left, middle, and right.
(a) What piece would B choose to trim?
(b) Now, assume B trims off the bottom of that piece, so that they are now the trimmings. Complete the Selfridge/Conway division, and describe what each person ends up getting.
(c) Find how much each person thinks each other person got, and verify this is an envy-free division.
7. Three people are using Selfridge.Conway to divide up a berry tart that has the following configuration:

M	M	L
M	M	L
M	M	L
M	M	H
H	M	H

Suppose A likes all three types of tart equally, B likes L and M equally, but likes H four times as much as those, and C likes H , but likes L three times as much, and C hates M. Also, suppose A divides the tart into three pieces by the columns, so we can call the pieces left, middle, and right.
(a) What piece would B choose to trim?
(b) Now, assume B trims off the top of that piece, so that they are now the trimmings. Complete the Selfridge/Conway division, and describe what each person ends up getting.
(c) Find how much each person thinks each other person got, and verify this is an envy-free division.
8. Say A and B jointly own a painting, and one of them will keep it. A thinks it's worth $\$ 1200$, and B thinks it's worth $\$ 800$.
(a) Describe all possible fair and envy-free arrangements.
(b) Find an equitable compensation arrangement.
(c) Use the Adjusted Winner method to find an equitable division if each puts $\$ 600$ in a joint account.
(d) Repeat part c, but have each player put $\$ 800$ in the joint account.
(e) Repeat part c, but have each player put $\$ 2400$ in the joint account.
(f) Compare the percent each player gets in the answers to parts b, c, d and e.

