Fairness triangle for compensation arrangements

1. Set A 's bid to 60 , B 's bid to 45 , and C 's bid to 30 . Activate the Equitable arrangement by clicking the box next to it. Do the same for the Equal compensation arrangements.
(a) Slide B 's bid to the left until the equitable arrangement is on the green line, $x_{B}=x_{C}$. What must be true for B 's and C 's bids for this to happen?
(b) Slide A 's bid to the far right and far left. Geometrically, what is happening to the equitable arrangement?
(c) Which equitable arrangements in 1(b) are envy-free?
(d) Prove: Assume A is a highest bidder. Then the equitable arrangement is envy-free if and only if B 's bid $=C$'s bid.
2. In this question, we will explore what the compensation arrangements look like when the winning bidder A is an average bidder.
(a) Recall from Quiz 9 that we proved for any real numbers a, b, and c :

$$
a=\frac{a+b+c}{3} \Longleftrightarrow a=\frac{b+c}{2}
$$

Now, In the applet, set B 's bid to 30 and C 's bid to 50 . What must A 's bid be for A to be exactly the average bidder?

$$
\text { A's bid }=
$$

(b) Slide A's bid to that value. What does the fairness triangle look like? Give the explicit value(s) for all point(s) in the fairness triangle.
(c) Are there any envy-free compensation arrangements? Explain geometrically.
(d) Prove for any bid values: If A is exactly an average bidder, then every fair compensation arrangement is equitable.
3. Set A 's bid to 60 , B 's bid to 40 and C 's bid to 30 . Move the dynamic point to $\{20,20\}$. Activate the Equal Compensation Amounts line.
(a) The point $\{20,20\}$ is the intersection of two lines on the graph. Which two lines? Circle two:

$$
x_{A}=\frac{a}{3} \quad x_{B}=\frac{b}{3} \quad x_{C}=\frac{c}{3} \quad x_{B}=x_{C}
$$

(b) Slide B 's bid to the right. For what values of B 's bid is the compensation arrangement $x_{B}=x_{C}=20$ fair?
(c) There is a value for B 's bid such that only ONE envy-free arrangement is possible. What is that value?

$$
B ' \text { s bid }=
$$

(d) For what values of B 's bid is an envy-free arrangement possible?
(e) Prove for any bid values: The winning bidder, A, is a highest bidder if and only if $x_{B}=x_{C}=\overline{\frac{a}{3}}$ is a fair compensation arrangement.
4. Set A 's bid to 60 . Set both B and C 's bids to 30 .
(a) Compute q for these bid values. Your answer should agree with the applet.
(b) Slide C 's bid to the right by 5 . Then decrease B 's bid one by one (use plus and minus buttons). How much do you have to decrease B 's bid for q to equal $1 / 2$ again?
(c) Reset B 's bid to 30. Keep C 's bid at 35. Increase A 's bid one by one until $q=1 / 2$. How much do you have to increase A 's bid to get $q=1 / 2$?
(d) Try other combinations that give $q=1 / 2$, by first sliding one bid and then correcting another. What appears to be the relationship between the bids for A, B, and C ? Write your guess as an equation in a, b, and c.
(e) Using algebra, prove that your guess from 3(e) is true. In other words, prove:

$$
q=\frac{1}{2} \Longleftrightarrow \quad \text { Your guess here: }
$$

Extra credit:

(f) Find bid values with $q=1 / 4, q=1 / 3$, and $q=3 / 5$:

$$
\begin{array}{lll}
q=\frac{1}{4}: & a= & b= \\
q=\frac{1}{3}: & a= & c=l \\
q=\frac{3}{5}: & a= & c=l \\
q & a= & c= \\
\hline
\end{array}
$$

(g) Activate the equitable arrangement. For each of the bid combinations you proposed in $3(\mathrm{f})$, adjust the bid values in the applet. Then answer the following:
i. For which values of q is the arrangement fair?
ii. Using your bid values proposed for each q in the last question, compute $a-b-c$. Compare when q is small to when q is big. Compare also to the q from 4(a)-(e).
iii. How does the fairness triangle compare for bid values with large q to bid values with small q ?
iv. Compute the payouts for the three different equitable arrangements you came up with. What do they look like when a is large? Explain conceptually why this makes sense.

