Homework 8: Chapters 5 and 6

1. 5.1 (Solution)

2. 6.1, 6.3 (Solutions)
3. Exercise (5.4) is to show that the Silly method is not Smith fair. Here's the example from class:

2	1	1	1
D	A	B	C
C	B	C	A
A	C	A	B
B	D	D	D

And here is one way to tweak the example from class:

2	1	1	1
D	A	C	C
B	C	B	A
A	B	A	B
C	D	D	D

Show that Silly method is not Smith fair using this example.

Solution. We want to show that there is a winner for the Silly method who is not in the Smith set. As we saw in class, there needs to not be a Condorcet candidate. With the adjustment, the Smith set is $S=\{A, B, C\}$ (check). Since there is no Condorcet candidate, the Silly method chooses the candidates with the plurality vote as the winners - these candidates are D and C. But D is not a Smith candidate, so the Silly method is NOT Smith fair.
4. Exercise (5.7) is to show that Silly Borda a.k.a. a posteriori Smith fair Borda count is not a priori Smith fair. Check that this example is a counterexample:

2	1	1
B	A	A
A	B	C
C	C	B

Solution. The Smith set is $S=\{A, B\}$. This set is dominating and could not be any smaller because A and B tie. Since Silly Borda only cares about Borda scores in the Smith set, we only need to compute those two scores:

$$
\begin{aligned}
& \mathcal{B}(A)=3 \times 2+2 \times 2=10 \\
& \mathcal{B}(B)=3 \times 2+2 \times 1+1 \times 1=9
\end{aligned}
$$

So the winner set for Silly Borda is $W=\{A\}$.
Now remove $C \notin S$. The new preference schedule is:

2	1	1			
B	A	A			
A	B	B	$=$	2	2
:---:	:---:				
B	A				
A	B				

The Smith set is still $\{A, B\}$ and clearly A and B will have the same Borda scores, which we can compute to be:

$$
\begin{aligned}
\mathcal{B}^{\prime}(A) & =2 \times 2+2 \times 1=6 \\
\mathcal{B}^{\prime}(B) & =2 \times 2+2 \times 1=6
\end{aligned}
$$

So the new winner set for Silly Borda is $\{A, B\}$ and C is a weak spoiler for Silly Borda.

