1. Consider the following cake, which is ¹/₃ Chocolate (C), ¹/₃ Blueberry (B) and ¹/₃ Walnut:

(a) Suppose two people, Peter (P) and Dina (D), wish to share the cake. In your last homework you summarized their preferences as follows: Valuations of the different components:

	C	B	W
P	5/7	0	2/7
D	1/6	2/6	3/6

i. Consider the division between P and D shown below, which results from the **equal division** method. (Note: we call a division resulting from doing the equal division method an equal division)

Verify that

$$(P's \text{ share}) = (D's \text{ share}) = 1/2$$

ii. Notice that in the equal division above both P and D receive half of the cake by volume. Let's now consider an **alternative division** that also assigns P and D half of the cake by volume, shown below.

= portion assigned to P
= portion assigned to D

A. Write down what *fraction* of each component each slice is made up of:

$$P$$
's slice = $S_1 =$ _____ $C +$ _____ $B +$ _____ W
 D 's slice = $S_2 =$ _____ $C +$ _____ $B +$ _____ W

B. Is this division an **equal division** (i.e. does it satisfy the definition of the equal division method)?

Circle One: Yes No

C. Why is assigning each person 1/N the volume of the *whole* cake not enough to qualify as an equal division?

(Hint: Does this tell you what fraction of each *component* a person gets?)

D. Find each person's share in the alternative division.

- E. Is the alternative division an objective improvement over the equal division?
- 2. Three cousins Edward (E), Sam (S) and Rebecca (R) have also been told they inherited the circular plot of land which is made up of 4 components, C_1, C_2, C_3 and C_4 , each composing 1/4 of the plot.

E, S and R decide they will divide up the land between the three of them. E and S's valuations of the components are given below and R's preferences are as follows:

Use this to fill in R's valuations of each component in the table below.

	C_1	C_2	C_3	C_4
E	1/12	4/12	4/12	3/12
S	1/7	2/7	1/7	3/7
R				

Suppose E cuts as follows:

The valuations of each slice are as follows:

	S_1	S_2	S_3
E	1/3	1/3	1/3
S	6/14	3/14	5/14
R	7/18	5/18	6/18

(a) List all slices each of S and R think is worth at least $\frac{1}{3}$ of the land in his/her own eyes.

S:_____

R:_____

(b) List all divisions that could result from using the **lone divider method** where E cuts as shown above and S and R are the choosers. Indicate whether or not each division is envy-free. If it is not envy-free list all incidences of envy.

- 3. Consider the following collection of 12 DVDs consisting of 3 types:
 - 2 Romance DVDs (R)
 - 4 Horror DVDs (H)
 - 6 Comedy DVDs (C)

We will represent the DVDs in the following diagram where one small square represents 1 DVD (all small squares are identical in area):

Н	R	R
Η	С	С
Н	С	С
Н	С	С

(a) Which of the following divisions represents a division resulting from the **equal division** method among 2 people, A and B? Circle all that apply.