Homework 15: Chapter 14

1. Suppose there are four bidders A, B, C, and D with bids

$$
a=20 \quad b=16 \quad c=4 \quad d=8
$$

and \mathbf{A} is the winning bidder.

(a) Find q for this compensation arrangement.
(b) What is the equitable compensation arrangement?
(c) Consider instead the following compensation arrangement:

$$
B \text { wins, pays out } x_{A}=5, x_{C}=3, x_{D}=5
$$

Construct the envy-table for this compensation arrangement. Find all instances of envy.

Solution. (a) Using the formula $q=\frac{w}{S}$,

$$
q=\frac{w}{S}=\frac{20}{20+16+4+8}=\frac{5}{5+4+1+2}=\frac{5}{12}
$$

(b) The equitable compensation arrangement is determined by what A pays to B, C, and D :

$$
\begin{aligned}
& x_{B}=q b=\frac{5}{12} \times 16=\frac{5 \times 4}{3}=\frac{20}{3} \\
& x_{C}=q c=\frac{5}{3} \\
& x_{D}=q d=\frac{10}{3}
\end{aligned}
$$

(c) We know what everyone thinks A, C, and D are getting. The only ambiguity is the net gain to B for getting the object.

	A	B	C	D	gets
A	5	7	3	5	
B	5	3	3	5	
C	5	-9	3	5	
D	5	-5	3	5	
thinks					

- A envies B
- B envies A and D
- C envies A and D
- D has no envy.

2. Prove: if the winning bidder A is a highest bidder and B, C are the only other bidders, then the compensation arrangement

$$
x_{B}=\frac{a}{3} \quad x_{C}=\frac{a}{3}
$$

is envy-free.

Proof. First, let's show A doesn't have envy. A thinks everyone else (B and C) gets $a / 3$. Actually, A thinks A gets $a / 3$ also:

$$
x_{A}=a-\frac{a}{3}-\frac{a}{3}=a-\frac{2 a}{3}=\frac{a}{3}
$$

so A does not envy anyone.
Also, B and C literally get the same thing, so they don't envy each other. And (for example) B doesn't envy A because $b \leq a$, by assumption that A is a highest bidder, so

$$
B t A g=b-\frac{a}{3}-\frac{a}{3} \leq a-\frac{2 a}{3}=\frac{a}{3}=B t B g
$$

and B doesn't envy A by definition.

The same argument is true for C, so we conclude that neither B nor C has any envy, and the compensation arrangement is envy-free.

Remark. Question 2 completes the proof of Our Proposition: An envy-free compensation arrangement is possible if and only if the winning bidder is a highest bidder.

