## Homework 14: Chapter 14 Solutions

## Other Exercises:

1. Suppose there are three bidders with bids $a, b, c$. Prove: If the winning bidder $A$ is an average bidder, then $q=\frac{1}{3}$.

Solution. If $A$ is an average bidder then $a=\frac{a+b+c}{3}$. By our work in class, we know

$$
q=\frac{w}{S}=a \times \frac{1}{a+b+c}=\frac{a+b+c}{3} \times \frac{1}{a+b+c}=\frac{1}{3}
$$

We can conclude that the equitable arrangement is fair, because every bidder is getting exactly their fair share:

$$
\begin{aligned}
& x_{A}=a q=\frac{a}{3} \\
& x_{B}=b q=\frac{b}{3} \\
& x_{C}=c q=\frac{c}{3}
\end{aligned}
$$

2. Is every equitable compensation arrangement envy-free? (Check some examples to help formulate your answer).

Solution. No, for example: Suppose $N=3, a$ is an average bidder, and $b<c$. Then $x_{B}=b q<c q=x_{C}$ so there is envy immediately! (Try plugging in numbers for $a, b$, and $c$ to make this statement clearer.)
3. If the answer to Question 2 is yes: prove it. If the answer to Question 2 is no: Can you find a (nontrivial) equitable compensation arrangement which is envy-free?
Sure can. We could've fixed the last example by making everyone's bids equal. Then $A$ is still an average bidder, and by Question 1 the equitable arrangement is that everyone gets $\frac{a}{3}$ (since all bids are equal).
But that isn't particularly exciting.
Another tricky thing: if there are two bidders, make the highest bidder a winning bidder and find the equitable arrangement. The highest bidder is at least average so by Prop 14.9 , this is fair, and by Corollary 13.15 the equitable compensation arrangement will be envy-free.
But this is also not particularly exciting.

In general, to be envy free, we need (at a minimum) that all payouts are equal. To be equitable, we need

$$
\begin{aligned}
& x_{A}=a q \\
& x_{B}=b q \\
& x_{C}=c q
\end{aligned}
$$

Then to be envy-free AND equitable, (and supposing $A$ is a winning bidder because why not), we need

$$
x_{B}=x_{C}=x_{D}=\cdots \Longleftrightarrow b q=c q=d q=\cdots \Longleftrightarrow b=c=d=\cdots
$$

In other words: being equitable and envy-free is only possible when all the (nonwinning) bids are equal. We still don't know for sure if this compensation arrangement is envy-free! It also needs to be fair! So we need $a \geq m=\frac{S}{N}$. This condition is made much more specific in this context because we've required all other bids to be equal. So in particular,

$$
\begin{aligned}
a \geq m & \Longleftrightarrow a \geq \frac{S}{N} \\
& \Longleftrightarrow a \geq \frac{a+b+c+d+\cdots}{N} \\
& \Longleftrightarrow a \geq \frac{a+(N-1) b}{N} \\
& \Longleftrightarrow N a \geq a+(N-1) b \\
& \Longleftrightarrow(N-1) a \geq(N-1) b \\
& \Longleftrightarrow a \geq b
\end{aligned}
$$

We just proved that not only must $a$ be at least average, but if every other bid is equal this is equivalent to saying $a$ is bigger than all those bids: i.e., $A$ is a highest bidder. We actually just proved:

Baby Proposition. The equitable compensation arrangement is envy-free if and only if the winning bidder is a highest bidder and all other bids are equal. Otherwise, it is impossible to find a compensation arrangement which is both equitable and envy-free.

