Homework 12: Chapter 13 Solutions

1. In class, we made the fairness triangle for the example with bids $a=30, b=27, c=21$ and A the winning bidder. The fairness triangle in the $\left(x_{B}, x_{C}\right)$-plane is shaded in blue in the picture below. The green line represents all compensation arrangements with equal compensation amounts.

(a) Remark. The vertical pink line $x_{B}=9$ represents all compensation arrangements such that B gets exactly B 's fair share, which is 9 . What does the horizontal orange line represent? C getting exactly C 's fair share
(b) The slanted blue line is all the compensation arrangements with $x_{B}+x_{C}=2 a / 3$. Explain: on this line, A is getting exactly A 's fair share. Off this line, A is getting either more or less than A 's fair share.
On this line $x_{B}+x_{C}=2 a / 3$, we can find A 's payout:

$$
x_{A}=a-x_{B}-x_{C}=a-\left(x_{B}+x_{C}\right)=a-\frac{2 a}{3}=\frac{3 a-2 a}{3}=a / 3
$$

If $x_{B}+x_{C}<2 a / 3$, then $-\left(x_{B}+x_{C}\right)>2 a / 3$, so

$$
x_{A}=a-x_{B}-x_{C}=a-\left(x_{B}+x_{C}\right)>a-\frac{2 a}{3}=a / 3
$$

A gets more than A 's fair share.

If $x_{B}+x_{C}>2 a / 3$, then the inequality above is flipped and A spent too much money to get A 's fair share out of the object that A won.
(c) Plot the compensation arrangement

$$
x_{B}=11 \quad x_{C}=9
$$

Is this compensation arrangement going to be fair? Envy-free? Yes, it will be fair, but it will not be envy-free. Point is plotted in black.
(d) What points are associated to the three corners of the fairness triangle? Top left: $(9,11)$. Bottom left: $(9,7)$. Bottom right: $(13,7)$.
(e) Find the intersection point between $x_{B}=x_{C}$ and the line where A gets A 's fair share. Plot it in the plane. Plotted in blue:

$$
x_{A}=a / 3 \Longleftrightarrow x_{B}+x_{C}=\frac{2 a}{3}
$$

Intersected with $x_{B}=x_{C}$:

$$
x_{B}+x_{B}=\frac{2 a}{3} \Longleftrightarrow 2 x_{B}=\frac{2 a}{3} \Longleftrightarrow x_{B}=x_{C}=\frac{a}{3}
$$

The intersection point is $(a / 3, a / 3)=(10,10)$. (btw that was a general proof)
2. In class we also studied the situation when B was the winning bidder. Consider the same bids $a=30, b=27, c=21$, and assume B is a winning bidder. Paychecks are now going to A and C.
(a) In the $\left(x_{A}, x_{C}\right)$-plane, graph all compensation arrangements fair to A. right of vertical pink in Figure 1
(b) In the $\left(x_{A}, x_{C}\right)$-plane, graph all compensation arrangements fair to B. below blue in Figure 1
(c) In the $\left(x_{A}, x_{C}\right)$-plane, graph all compensation arrangements fair to C. above orange in Figure 1
(d) Draw the fairness triangle. Find the coordinates for the three corners of the triangle. $(10,7),(10,8),(11,7)$
(e) Find the intersection point between $x_{A}=x_{C}$ and the line where B gets B 's fair share. Plot it in the plane. $(9,9)$
(f) Is the compensation arrangement associated to that point fair to A? no
B? yes
C? yes
(g) Draw the line $x_{A}=x_{C}$. Draw a line from the origin to $(9,9)$
(h) Can you find an envy-free compensation arrangement for this example? If yes, give one. No, because the line $x_{A}=x_{C}$ representing equal compensation amounts does not intersect the fairness triangle

Figure 1
3. Consider again three bidders who submit bids $a=15, b=9, c=21$.
(a) What are the fair shares? $A: 5, B: 3, C: 7$
(b) What is the average bid? 15
(c) Suppose from here on out that A is the winning bidder. Plot the region of the plane where B and C are getting their fair shares. B : to the right of the pink line in Figure 2. C : above the orange line in Figure 2.
(d) What is the intersection point where B and C get exactly their fair shares? Call this intersection point $P . P=(3,7)$
(e) Prove: P is on the line which represents A getting exactly A 's fair share. We want to show P is on the line $x_{B}+x_{C}=10$. This is true because:

$$
3+7=10
$$

So we conclude that the line $x_{B}+x_{C}=10$ crosses through P.
(f) Draw the "fairness triangle". It is exactly the point P. No other points are in the fairness triangle.
(g) Draw the line $x_{B}=x_{C}$. Using the strategy outlined in the last problem: where does the line $x_{B}=x_{C}$ hit the line representing A getting A 's fair share? It will be at $(a / 3, a / 3)=(5,5)$. Use this to plot the line and see where it sits on your graph (see dashed lines in Figure 2).
(h) Do there exist envy-free compensation arrangements for this example? No, because the line representing equal compensation amounts does not cross the fairness triangle.

Figure 2
4. (Optional) Prove: For any number of bidders and any bids, the sum of the fair shares is equal to the average bid.

Proof. Suppose the n bids are $b_{1}, b_{2}, \ldots, b_{n}$. Then the fair shares are $b_{1} / n, b_{2} / n, \ldots, b_{n} / n$. If we add them all up:

$$
\frac{b_{1}}{n}+\frac{b_{2}}{n}+\cdots+\frac{b_{n}}{n}=\frac{b_{1}+b_{2}+\cdots+b_{n}}{n}=\frac{S}{n}=m
$$

